Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 10(8): 2897-902, 2010 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-20698602

RESUMO

We report a crossed-nanowire molecular junction array platform that enables direct measurement of current-voltage-temperature characteristics simultaneously with inelastic electron tunneling and Raman vibrational spectra on the same junction. Measurements on dithiol-terminated oligo(phenylene-ethynylene) junctions show both spectroscopies interrogate the gap-confined molecules to reveal distinct molecular features. This versatile platform allows investigation of advanced phenomena such as molecular switching and cooperative effects with the flexible ability to scale both the junction geometries and array sizes.

2.
J Am Chem Soc ; 131(23): 8016-29, 2009 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-19507902

RESUMO

Al atom deposition with controlled coverages has been carried out on self-assembled monolayers (SAMs), prepared by assembly of HS(CH(2))(15)X, with X = -CH(3) (M-SAM) and -CO(2)CH(3) (ME-SAM), on Au {111} substrates, and the resulting structures and electrical properties analyzed in situ by ultrahigh-vacuum, multiple mode atomic force microscopy (contact, noncontact, and conducting probe) and infrared reflection spectroscopy. The M-SAM data clearly reveal a distinct morphology transition at approximately 3 Al atoms per adsorbate molecule (3 EL) from formation of a buried approximately 1:1 Al-Au adlayer at low coverages to metal overlayer cluster nucleation and the appearance of isolated metal nanofilaments with varied behaviors including Ohmic conduction, resistive switching (memristor), and vestiges of quantum-like conductance steps. The ME-SAM data confirm our earlier report of a highly efficient, 1:1 chemical trapping of initial nascent Al atoms by the terminal ester group while also revealing formation of isolated, conducting filaments, mainly at SAM defects, and the presence of an insulating overlayer up to approximately 5 EL. For both SAMs, despite the large thermochemical driving forces to exhaustively form inorganic products, subtle kinetic pathways guide the evolution of metal nanostructures within and contiguous to the SAM. Overall the experiments demonstrate a highly controlled, quantitative strategy for exploring the chemistry of nascent metal atoms with organic moieties as well as providing opportunities to generate novel metal nanostructures with significant implications for molecular and organic device applications.

3.
J Biomed Mater Res B Appl Biomater ; 106(3): 1064-1072, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28508428

RESUMO

Polyvinylpyrrolidone (PVP) has been incorporated over the years into numerous hydrogel contact lenses as both a primary matrix component and an internal wetting agent to increase lens wettability. In this study, complementary analytical techniques were used to characterize the PVP wetting agent component of senofilcon A and samfilcon A contact lenses, both in terms of chemical composition and amount present. Photo-differential scanning calorimetry (photo-DSC), gas chromatography with a flame ionization detector (GC-FID), and high-resolution/accurate mass (HR/AM) liquid chromatography-mass spectrometry (LC-MS) techniques confirmed dual phase reaction and curing of the samfilcon A silicone hydrogel material. Gel permeation chromatography (GPC) demonstrated that high molecular weight (HMW) polymer was present in isopropanol (IPA) extracts of both lenses. High-performance liquid chromatography (HPLC) effectively separated hydrophilic PVP from the hydrophobic silicone polymers present in the extracts. Collectively, atmospheric solids analysis probe mass spectrometry (ASAP MS), Fourier transform infrared (FTIR) spectroscopy, 1 H nuclear magnetic resonance (NMR) spectroscopy, GC-FID, and LC-MS analyses of the lens extracts indicated that the majority of NVP is consumed during the second reaction phase of samfilcon A lens polymerization and exists as HMW PVP, similar to the PVP present in senofilcon A. GC-FID analysis of pyrolyzed samfilcon A and senofilcon A indicates fourfold greater PVP in samfilcon A compared with senofilcon A. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1064-1072, 2018.


Assuntos
Lentes de Contato Hidrofílicas , Hidrogéis/análise , Excipientes Farmacêuticos/análise , Povidona/análise , Silicones/análise , 2-Propanol , Hidrogéis/química , Cinética , Peso Molecular , Polimerização , Silicones/química , Solventes , Molhabilidade
4.
ACS Nano ; 1(1): 30-49, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19203128

RESUMO

Structural trends for a homologous series of n-alkanethiolate self-assembled monolayers (SAMs), C(n)H(2n+1)S- with 12 < or = n < or = 19, on GaAs(001), studied by a combination of grazing incidence X-ray diffraction and infrared spectroscopy, along with ancillary probes, show an overall decay in organization with decreasing n, with the largest changes occurring below n = 15-16. The long-chain monolayers form a mosaic structure with < or =10 nm domains of molecules organized in an incommensurate pseudo-hcp arrangement with nearest neighbor distances of 4.70 and 5.02 A, a 21.2 A(2) area per chain, two chains per subcell in a herringbone packing with a chain tilt angle of 14 degrees , and preferential domain alignment along the substrate [110]([110]) step edge direction. In contrast, for n < 14 no evidence of translational ordering is seen and the alkyl chains exhibit a loss of conformational ordering and coverage relative to the n > 16 cases. A 4'-methyl-biphenyl-4-thiolate companion SAM shows evidence for ordered structures but with lattice parameters close to those expected for a structure commensurate with the intrinsic GaAs(001) square lattice. These trends are explained on the basis of competitions between lattice, interfacial, and intermolecular forces controlling the nanoscale structures of the SAMs. Overall these results provide an important aspect of understanding the effects of SAM formation on surface properties such as electronic and chemical passivation.

5.
J Am Chem Soc ; 128(42): 13710-9, 2006 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-17044698

RESUMO

The penetration behavior of thermally evaporated Au on S(CH(2))(15)CH(3), S(CH(2))(15)CO(2)CH(3), S(CH(2))(15)CO(2)H, K-modified S(CH(2))(15)CO(2)CH(3), and K-modified S(CH(2))(15)CO(2)H self-assembled monolayers (SAM) on Au substrates is investigated. Gold is a particularly interesting metal since vapor-deposited Au atoms are known to pass through alkanethiolate SAMs on Au{111} substrates at room temperature. Here we show that it is possible to control Au penetration by adjusting the interactions between terminal groups. It is found that Au atoms evenly penetrate into the CH(3) and CO(2)CH(3) films, forming smooth buried layers below the organic thin films. For the CO(2)H film, although Au atoms can still penetrate through it, filaments and mushroomlike clusters form due to H-bonding between film molecules. In the case of the K-modified CO(2)CH(3) or CO(2)H films, however, most Au atoms form islands at the vacuum interface. These results suggest that van der Waals forces and H-bonds are not strong enough to block Au from going through but that ionic interactions are able to block Au penetration. The measurements were performed primarily using time-of-flight secondary ion mass spectrometry (ToF-SIMS) and atomic force microscopy (AFM). The combination of these highly complementary probes provides a very useful strategy for the study of metal atom behavior on SAMs.

6.
Langmuir ; 21(24): 11061-70, 2005 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-16285772

RESUMO

Self-assembled monolayers (SAMs) of the isocyano derivative of 4,4'-di(phenylene-ethynylene)benzene (1), a member of the "OPE" family of "molecular wires" of current interest in molecular electronics, have been prepared on smooth, {111} textured films of Au and Pd. For assembly in oxygen-free environments with freshly deposited metal surfaces, infrared reflection spectroscopy (IRS) indicates the molecules assume a tilted structure with average tilt angles of 18-24 degrees from the surface normal. The combination of IRS, X-ray photoelectron spectroscopy, and density functional theory calculations all support a single sigma-type bond of the -NC group to the Au surface and a sigma/pi-type of bond to the Pd surface. Both SAMs show significant chemical instability when exposed to typical ambient conditions. In the case of the Au SAM, even a few hours storage in air results in significant oxidation of the -NC moieties to -NCO (isocyanate) with an accompanying decrease in surface chemical bonding, as evidenced by a significant increase in instability toward dissolution in solvent. In the case of the Pd SAM, similar air exposure does not result in incorporation of oxygen or loss of solvent resistance but rather results in a chemically altered interface which is attributed to polymerization of the -NC moieties to quasi-2D poly(imine) structures. Conductance probe atomic force microscope measurements show the conductance of the degraded Pd SAMs can diminish by approximately 2 orders of magnitude, an indication that the SAM-Pd electrical contact has severely degraded. These results underscore the importance of careful control of the assembly procedures for aromatic isocyanide SAMs, particularly for applications in molecular electronics where the molecule-electrode junction is critical to the operational characteristics of the device.

7.
Nano Lett ; 5(12): 2365-72, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16351179

RESUMO

Single molecular monolayers of oligoaniline dimers were integrated into sub-40-nm-diameter metal nanowires to form in-wire molecular junctions. These junctions exhibited reproducible room temperature bistable switching with zero-bias high- to low-current state conductance ratios of up to 50, switching threshold voltages of approximately +/-1.5 V, and no measurable decay in the high-state current over 22 h. Such switching was not observed in similarly fabricated saturated dodecane (C12) or conjugated oligo(phenylene ethynylene) (OPE) molecular junctions. The low- and high-state current versus voltage was independent of temperature (10-300 K), suggesting that the dominant transport mechanism in these junctions is coherent tunneling. Inelastic electron tunneling spectra collected at 10 K show a change in the vibrational modes of the oligoaniline dimers when the junctions are switched from the low- to the high-current state. The results of these measurements suggest that the switching behavior is an inherent molecular feature that can be attributed to the oligoaniline dimer molecules that form the junction.


Assuntos
Compostos de Anilina/química , Eletroquímica/instrumentação , Nanotecnologia/instrumentação , Nanotubos/química , Nanotubos/ultraestrutura , Processamento de Sinais Assistido por Computador/instrumentação , Compostos de Sulfidrila/química , Condutividade Elétrica , Eletroquímica/métodos , Eletrônica , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais , Nanotecnologia/métodos , Semicondutores
8.
J Am Chem Soc ; 126(12): 3954-63, 2004 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-15038750

RESUMO

We have studied the interaction of vapor-deposited Al, Cu, Ag, and Au atoms on a methoxy-terminated self-assembled monolayer (SAM) of HS(CH(2))(16)OCH(3) on polycrystalline Au[111]. Time-of-flight secondary ion mass spectrometry, infrared reflection spectroscopy, and X-ray photoelectron spectroscopy measurements at increasing coverages of metal show that for Cu and Ag deposition at all coverages the metal atoms continuously partition into competitive pathways: penetration through the SAM to the S/substrate interface and solvation-like interaction with the -OCH(3) terminal groups. Deposited Au atoms, however, undergo only continuous penetration, even at high coverages, leaving the SAM "floating" on the Au surface. These results contrast with earlier investigations of Al deposition on a methyl-terminated SAM where metal atom penetration to the Au/S interface ceases abruptly after a approximately 1:1 Al/Au layer has been attained. These observations are interpreted in terms of a thermally activated penetration mechanism involving dynamic formation of diffusion channels in the SAM via hopping of alkanethiolate-metal (RSM-) moieties across the surface. Using supporting quantum chemical calculations, we rationalized the results in terms of the relative heights of the hopping barriers, RSAl > RSAg, RSCu > RSAu, and the magnitudes of the metal-OCH(3) solvation energies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA