Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 81(1): 47, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38236305

RESUMO

Type 2 diabetes mellitus is a global epidemic that due to its increasing prevalence worldwide will likely become the most common debilitating health condition. Even if diabetes is primarily a metabolic disorder, it is now well established that key aspects of the pathogenesis of diabetes are associated with nervous system alterations, including deleterious chronic inflammation of neural tissues, referred here as neuroinflammation, along with different detrimental glial cell responses to stress conditions and neurodegenerative features. Moreover, diabetes resembles accelerated aging, further increasing the risk of developing age-linked neurodegenerative disorders. As such, the most common and disabling diabetic comorbidities, namely diabetic retinopathy, peripheral neuropathy, and cognitive decline, are intimately associated with neurodegeneration. As described in aging and other neurological disorders, glial cell alterations such as microglial, astrocyte, and Müller cell increased reactivity and dysfunctionality, myelin loss and Schwann cell alterations have been broadly described in diabetes in both human and animal models, where they are key contributors to chronic noxious inflammation of neural tissues within the PNS and CNS. In this review, we aim to describe in-depth the common and unique aspects underlying glial cell changes observed across the three main diabetic complications, with the goal of uncovering shared glial cells alterations and common pathological mechanisms that will enable the discovery of potential targets to limit neuroinflammation and prevent neurodegeneration in all three diabetic complications. Diabetes and its complications are already a public health concern due to its rapidly increasing incidence, and thus its health and economic impact. Hence, understanding the key role that glial cells play in the pathogenesis underlying peripheral neuropathy, retinopathy, and cognitive decline in diabetes will provide us with novel therapeutic approaches to tackle diabetic-associated neurodegeneration.


Assuntos
Diabetes Mellitus Tipo 2 , Retinopatia Diabética , Doenças do Sistema Nervoso Periférico , Animais , Humanos , Doenças Neuroinflamatórias , Neuroglia , Inflamação
2.
Immunol Cell Biol ; 101(1): 25-35, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36427276

RESUMO

The interaction between immune and stem cells has proven essential for homeostasis and regeneration in a wide range of tissues. However, because the central nervous system was long considered an immune-privileged organ, its immune-stem cell axis was not deeply investigated until recently. Research has shown that oligodendrocyte progenitor cells (OPCs), a highly abundant population of adult brain stem cells, establish bidirectional interactions with the immune system. Here, we provide an overview of the interactions that OPCs have with tissue-resident and recruited immune cells, paying particular attention to the role they play in myelin regeneration and neuroinflammation. We highlight the described role of OPCs as key active players in neuroinflammation, overriding the previous concept that OPCs are mere recipients of immune signals. Understanding the mechanisms behind this bidirectional interaction holds great potential for the development of novel therapeutic approaches limiting neuroinflammation and promoting myelin repair. A better understanding of the central nervous system's immune-stem cell axis will also be key for tackling two important features shared across neurodegenerative diseases, neuroinflammation and myelin loss.


Assuntos
Células Precursoras de Oligodendrócitos , Humanos , Células Precursoras de Oligodendrócitos/fisiologia , Oligodendroglia , Doenças Neuroinflamatórias , Sistema Nervoso Central , Células-Tronco , Diferenciação Celular
3.
Nat Commun ; 15(1): 1870, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467607

RESUMO

Myelin regeneration (remyelination) is essential to prevent neurodegeneration in demyelinating diseases such as Multiple Sclerosis, however, its efficiency declines with age. Regulatory T cells (Treg) recently emerged as critical players in tissue regeneration, including remyelination. However, the effect of ageing on Treg-mediated regenerative processes is poorly understood. Here, we show that expansion of aged Treg does not rescue age-associated remyelination impairment due to an intrinsically diminished capacity of aged Treg to promote oligodendrocyte differentiation and myelination in male and female mice. This decline in regenerative Treg functions can be rescued by a young environment. We identified Melanoma Cell Adhesion Molecule 1 (MCAM1) and Integrin alpha 2 (ITGA2) as candidates of Treg-mediated oligodendrocyte differentiation that decrease with age. Our findings demonstrate that ageing limits the neuroregenerative capacity of Treg, likely limiting their remyelinating therapeutic potential in aged patients, and describe two mechanisms implicated in Treg-driven remyelination that may be targetable to overcome this limitation.


Assuntos
Remielinização , Humanos , Masculino , Feminino , Camundongos , Animais , Idoso , Remielinização/fisiologia , Linfócitos T Reguladores/metabolismo , Oligodendroglia/fisiologia , Diferenciação Celular/fisiologia , Bainha de Mielina/metabolismo , Envelhecimento , Sistema Nervoso Central
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA