Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 143(2): 744-763, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33400528

RESUMO

Both [CoII(qpy)(H2O)2]2+ and [FeII(qpy)(H2O)2]2+ (with qpy = 2,2':6',2″:6'',2‴-quaterpyridine) are efficient homogeneous electrocatalysts and photoelectrocatalysts for the reduction of CO2 to CO. The Co catalyst is more efficient in the electrochemical reduction, while the Fe catalyst is an excellent photoelectrocatalyst ( ACS Catal. 2018, 8, 3411-3417). This work uses density functional theory to shed light on the contrasting catalytic pathways. While both catalysts experience primarily ligand-based reductions, the second reduction in the Co catalyst is delocalized onto the metal via a metal-ligand bonding interaction, causing a spin transition and a distorted ligand framework. This orbital interaction explains the experimentally observed mild reduction potential and slow kinetics of the second reduction. The decreased hardness and doubly occupied dz2-orbital facilitate a σ-bond with the CO2-π* in an η1-κC binding mode. CO2 binding is only possible after two reductions resulting in an EEC mechanism (E = electron transfer, C = chemical reaction), and the second protonation is rate-limiting. In contrast, the Fe catalyst maintains a Lewis acidic metal center throughout the reduction process because the metal orbitals do not strongly mix with the qpy-π* orbitals. This allows binding of the activated CO2 in an η2-binding mode. This interaction stabilizes the activated CO2 via a π-type interaction of a Fe-t2g orbital and the CO2-π* and a dative bond of the oxygen lone pair. This facilitates CO2 binding to a singly reduced catalyst resulting in an ECE mechanism. The barrier for CO2 addition and the second protonation are higher than those for the Co catalyst and rate-limiting.

2.
J Chem Theory Comput ; 20(15): 6426-6441, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39068594

RESUMO

Bosonic quantum devices offer a novel approach to realize quantum computations, where the quantum two-level system (qubit) is replaced with the quantum (an)harmonic oscillator (qumode) as the fundamental building block of the quantum simulator. The simulation of chemical structure and dynamics can then be achieved by representing or mapping the system Hamiltonians in terms of bosonic operators. In this Perspective, we review recent progress and future potential of using bosonic quantum devices for addressing a wide range of challenging chemical problems, including the calculation of molecular vibronic spectra, the simulation of gas-phase and solution-phase adiabatic and nonadiabatic chemical dynamics, the efficient solution of molecular graph theory problems, and the calculations of electronic structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA