Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Cancer Cell Int ; 22(1): 9, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34996478

RESUMO

BACKGROUND: Glioblastoma multiforme (GBM) is a heterogeneous CNS neoplasm which causes significant morbidity and mortality. One reason for the poor prognostic outcome of GBM is attributed to the presence of cancer stem cells (CSC) which confer resistance against standard chemo- and radiotherapeutics modalities. Two types of GBM-associated CSC were isolated from the same patient: tumor core- (c-CSC) and peritumor tissue-derived cancer stem cells (p-CSC). Our experiments are focused on glioblastoma-IDH-wild type, and no disease-defining alterations were present in histone, BRAF or other genes. METHODS: In the present study, potential differences in genetic variants between c-CSC versus p-CSC derived from four GBM patients were investigated with the aims of (1) comparing the exome sequences between all the c-CSC or p-CSC to identify the common variants; (2) identifying the variants affecting the function of genes known to be involved in cancer origin and development. RESULTS: By comparative analyses, we identified common gene single nucleotide variants (SNV) in all GBM c-CSC and p-CSC, a potentially deleterious variant was a frameshift deletion at Gln461fs in the MLLT1 gene, that was encountered only in p-CSC samples with different allelic frequency. CONCLUSIONS: We discovered a potentially harmful frameshift deletion at Gln461fs in the MLLT1 gene. Further investigation is required to confirm the presence of the identified mutations in patient tissue samples, as well as the significance of the frameshift mutation in the MLLT1 gene on GBM biology and response to therapy based on genomic functional experiments.

2.
Metab Brain Dis ; 37(4): 973-988, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35075502

RESUMO

Rosemary oil (ROO) is known to have multiple pharmacological effects: it is an antioxidant, anti-inflammatory, and cytoprotective. In the present study, we examined the effects of ROO on Human olfactory bulb neuronal stem cells (hOBNSCs) after their transplantation into rats, with the ibotenic (IBO) acid-induced cognitive deficit model. After 7 weeks, cognitive functions were assessed using the Morris water maze (MWM). After two months blood and hippocampus samples were collected for biochemical, gene expression, and histomorphometric analyses. Learning ability and memory function were significantly enhanced (P < 0.05) after hOBNSCs transplantation and were nearly returned to normal in the treated group. The IBO acid injection was associated with a significant decline (P < 0.05) of total leukocyte count (TLC) and a significant increase (P < 0.05) in total and toxic neutrophils. As well, the level of IL-1ß, TNF-α CRP in serum and levels of MDA and NO in hippocampus tissue were significantly elevated (P < 0.05), while antioxidant markers (CAT, GSH, and SOD) were reduced (P < 0.05) in treated tissue compared to controls. The administration of ROO before or with cell transplantation attenuated all these parameters. In particular, the level of NO nearly returned to normal when rosemary was administrated before cell transplantation. Gene expression analysis revealed the potential protective effect of ROO and hOBNSCs via down-expression of R-ßAmyl and R- CAS 3 and R-GFAP genes. The improvement in the histological organization of the hippocampus was detected after the hOBNSCs transplantation especially in h/ROO/hOBNSCs group.


Assuntos
Doença de Alzheimer , Células-Tronco Neurais , Síndromes Neurotóxicas , Rosmarinus , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Animais , Antioxidantes/uso terapêutico , Suplementos Nutricionais , Humanos , Ácido Ibotênico/metabolismo , Ácido Ibotênico/farmacologia , Ácido Ibotênico/uso terapêutico , Aprendizagem em Labirinto , Células-Tronco Neurais/metabolismo , Síndromes Neurotóxicas/metabolismo , Óleos Voláteis , Bulbo Olfatório , Ratos
3.
Cancer Cell Int ; 21(1): 703, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34952583

RESUMO

The p53 protein is a transcription factor known as the "guardian of the genome" because of its critical function in preserving genomic integrity. The TP53 gene is mutated in approximately half of all human malignancies, including those of the breast, colon, lung, liver, prostate, bladder, and skin. When DNA damage occurs, the TP53 gene on human chromosome 17 stops the cell cycle. If p53 protein is mutated, the cell cycle is unrestricted and the damaged DNA is replicated, resulting in uncontrolled cell proliferation and cancer tumours. Tumor-associated p53 mutations are usually associated with phenotypes distinct from those caused by the loss of the tumor-suppressing function exerted by wild-type p53protein. Many of these mutant p53 proteins have oncogenic characteristics, and therefore modulate the ability of cancer cells to proliferate, escape apoptosis, invade and metastasize. Because p53 deficiency is so common in human cancer, this protein is an excellent option for cancer treatment. In this review, we will discuss some of the molecular pathways by which mutant p53 proteins might perform their oncogenic activities, as well as prospective treatment methods based on restoring tumor suppressive p53 functions.

4.
Mol Biol Rep ; 48(9): 6513-6524, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34398427

RESUMO

We give a summary of SARS-genetic CoV-2's structure and evolution, as well as current attempts to develop efficient vaccine and treatment methods for SARS-CoV-2 infection, in this article. Most therapeutic strategies are based on repurposing of existing therapeutic agents used against various virus infections and focused mainly on inhibition of the virus replication cycle, enhancement of innate immunity, and alleviation of CRS caused by COVID-19. Currently, more than 100 clinical trials on COVID-19 aim to provide robust evidence on the efficacy of the currently available anti-SARS-CoV-2 antiviral substances, such as the nucleotide analogue remdesivir, the antimalarial drug chloroquine, and drugs directed against docking of SARS-CoV-2 to the membrane-associated angiotensin-converting enzyme 2 (ACE2) such as transmembrane protease serine 2 (TMPRSS2). The current vaccination campaign is ongoing worldwide using different types of vaccines such as Pfizer-BioNTech and Moderna, Johnson & Johnson, Oxford-AstraZeneca, Novavax, and others with efficacy ranging from 72-95%. In March 2021 Germany limited the use of the Oxford-AstraZeneca COVID-19 vaccine to people 60 years of age and older due to concerns that it may be causing blood clots. Further study and more data are needed to confirm the safety of different available vaccines.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/imunologia , Estruturas Genéticas/genética , Pandemias/prevenção & controle , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Alanina/análogos & derivados , Alanina/farmacologia , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Antivirais/farmacologia , COVID-19/virologia , Humanos , Vacinação/métodos , Tratamento Farmacológico da COVID-19
5.
J Cell Physiol ; 233(2): 1321-1329, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28500734

RESUMO

In the central nervous system (CNS), oligodendrocytes are the glial element in charge of myelin formation. Obtaining an overall presence of oligodendrocyte precursor cells/oligodendrocytes (OPCs/OLs) in culture from different sources of NSCs is an important research area, because OPCs/OLs may provide a promising therapeutic strategy for diseases affecting myelination of axons. The present study was designed to differentiate human olfactory bulb NSCs (OBNSCs) into OPCs/OLs and using expression profiling (RT-qPCR) gene, immunocytochemistry, and specific protein expression to highlight molecular mechanism(s) underlying differentiation of human OBNSCs into OPCs/OLs. The differentiation of OBNSCs was characterized by a simultaneous appearance of neurons and glial cells. The differentiation medium, containing cAMP, PDGFA, T3, and all-trans-retinoic acid (ATRA), promotes OBNSCs to generate mostly oligodendrocytes (OLs) displaying morphological changes, and appearance of long cytoplasmic processes. OBNSCs showed, after 5 days in OLs differentiation medium, a considerable decrease in the number of nestin positive cells, which was associated with a concomitant increase of NG2 immunoreactive cells and few O4(+)-OPCs. In addition, a significant up regulation in gene and protein expression profile of stage specific cell markers for OPCs/OLs (CNPase, Galc, NG2, MOG, OLIG1, OLIG2, MBP), neurons, and astrocytes (MAP2, ß-TubulinIII, GFAP) and concomitant decrease of OBNSCs pluripotency markers (Oct4, Sox2, Nestin), was demonstrated following induction of OBNSCs differentiation. Taken together, the present study demonstrate the marked ability of a cocktail of factors containing PDGFA, T3, cAMP, and ATRA, to induce OBNSCs differentiation into OPCs/OLs and shed light on the key genes and pathological pathways involved in this process.


Assuntos
AMP Cíclico/farmacologia , Células-Tronco Neurais/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Bulbo Olfatório/citologia , Oligodendroglia/efeitos dos fármacos , Fator de Crescimento Derivado de Plaquetas/farmacologia , Tretinoína/farmacologia , Tri-Iodotironina/farmacologia , Adulto , Biomarcadores/metabolismo , Forma Celular/efeitos dos fármacos , Células Cultivadas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Pessoa de Meia-Idade , Células-Tronco Neurais/metabolismo , Oligodendroglia/metabolismo , Fenótipo , Fatores de Tempo
7.
J Cell Physiol ; 231(7): 1432-7, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26496533

RESUMO

Alzheimer's disease (AD) is one of the most devastating disorders. Despite the continuing increase of its incidence among aging populations, no effective cure has been developed mainly due to difficulties in early diagnosis of the disease before damaging of the brain, and the failure to explore its complex underlying molecular mechanisms. Recent technological advances in genome-wide association studies (GWAS) and high throughput next generation whole genome, and exome sequencing had deciphered many of AD-related loci, and discovered single nucleotide polymorphisms (SNPs) that are associated with altered AD molecular pathways. Highlighting altered molecular pathways linked to AD pathogenesis is crucial to identify novel diagnostic and therapeutic AD targets.


Assuntos
Doença de Alzheimer/genética , Encéfalo/metabolismo , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Encéfalo/patologia , Humanos , Polimorfismo de Nucleotídeo Único , Transdução de Sinais
8.
Discov Oncol ; 13(1): 49, 2022 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-35716231

RESUMO

EV produced by tumour cells carry a diverse population of proteins, lipids, DNA, and RNA molecules throughout the body and appear to play an important role in the overall development of the disease state, according to growing data. Gliomas account for a sizable fraction of all primary brain tumours and the vast majority of brain malignancies. Glioblastoma multiforme (GBM) is a kind of grade IV glioma that has a very dismal prognosis despite advancements in diagnostic methods and therapeutic options. The authors discuss advances in understanding the function of extracellular vesicles (EVs), in overall glioma growth, as well as how recent research is uncovering the utility of EVs in glioma diagnostics, prognostic and therapeutics approaches.

9.
Stem Cell Res ; 56: 102552, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34634760

RESUMO

Alzheimer's disease (AD) is the major cause of dementia worldwide. Early-onset familial AD accounts for about 0.5% of all AD and is caused by single major gene mutations and autosomal dominant inheritance. An N141I missense mutation is associated with a significant increase in basal cell death and apoptosis. In this work we generated hiPSC from skin fibroblasts obtained from an AD patient carrying a N141I missense mutation in PSEN2. The generated iPSC colonies grew and were characterized by pluripotency marker staining; the N141I missense mutation was corrected using genome editing technology.


Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , Doença de Alzheimer/genética , Edição de Genes , Humanos , Mutação , Mutação de Sentido Incorreto , Presenilina-1 , Presenilina-2/genética
10.
Cancer Med ; 10(15): 5019-5030, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34145792

RESUMO

Glioblastoma multiforme (GBM) is one of the deadliest brain tumors with an unfavorable prognosis and overall survival of approximately 20 months following diagnosis. The current treatment for GBM includes surgical resections and chemo- and radiotherapeutic modalities, which are not effective. CAR-T immunotherapy has been proven effective for CD19-positive blood malignancies, and the application of CAR-T cell therapy for solid tumors including GBM offers great hope for this aggressive tumor which has a limited response to current treatments. CAR-T technology depends on the use of patient-specific T cells genetically engineered to express specific tumor-associated antigens (TAAs). Interaction of CAR-T cells with tumor cells triggers the destruction/elimination of these cells by the induction of cytotoxicity and the release of different cytokines. Despite the great promise of CAR-T cell-based therapy several challenges exist. These include the heterogeneity of GBM cancer cells, aberrant various signaling pathways involved in tumor progression, antigen escape, the hostile inhibitory GBM microenvironment, T cell dysfunction, blood-brain barrier, and defective antigen presentation. All need to be addressed before full application at the clinical level can begin. Herein we provide a focused review of the rationale for the use of different types of CAR-T cells (including FcγRs), the different GBM-associated antigens, the challenges still facing CAR-T-based therapy, and means to overcome such challenges. Finally, we enumerate currently completed and ongoing clinical trials, highlighting the different ways such trials are designed to overcome specific problems. Exploitation of the full potential of CAR-T cell therapy for GBM depends on their solution.


Assuntos
Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/uso terapêutico , Anticorpos Biespecíficos/imunologia , Anticorpos Biespecíficos/uso terapêutico , Apresentação de Antígeno , Antígenos de Neoplasias/imunologia , Barreira Hematoencefálica , Neoplasias Encefálicas/imunologia , Movimento Celular/imunologia , Movimento Celular/fisiologia , Ensaios Clínicos como Assunto , Progressão da Doença , Receptores ErbB/imunologia , Previsões , Glioblastoma/imunologia , Humanos , Inibidores de Checkpoint Imunológico/metabolismo , Imunoterapia Adotiva/efeitos adversos , Subunidade alfa2 de Receptor de Interleucina-13/imunologia , Ativação Linfocitária , Depleção Linfocítica , Receptor ErbB-2/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/uso terapêutico , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/fisiologia , Evasão Tumoral , Microambiente Tumoral/imunologia
11.
Toxicol Pathol ; 37(4): 425-37, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19387086

RESUMO

Inorganic arsenic increases urinary bladder transitional cell carcinoma in humans. In F344 rats, dimethylarsinic acid (DMA[V]) increases transitional cell carcinoma. Arsenic-induced inhibition of DNA repair has been reported in cultured cell lines and in lymphocytes of arsenic-exposed humans, but it has not been studied in urinary bladder. Should inhibition of DNA damage repair in transitional epithelium occur, it may contribute to carcinogenesis or cocarcinogenesis. We investigated morphology and expression of DNA repair genes in F344 rat transitional cells following up to 100 ppm DMA(V) in drinking water for four weeks. Mitochondria were very sensitive to DMA(V), and swollen mitochondria appeared to be the main source of vacuoles in the transitional epithelium. Real-time reverse transcriptase polymerase chain reaction (Real-Time RT PCR) showed the mRNA levels of tested DNA repair genes, ataxia telangectasia mutant (ATM), X-ray repair cross-complementing group 1 (XRCC1), excision repair cross-complementing group 3/xeroderma pigmentosum B (ERCC3/XPB), and DNA polymerase beta (Polbeta), were not altered by DMA(V). These data suggested that either DMA(V) does not affect DNA repair in the bladder or DMA(V) affects DNA repair without affecting baseline mRNA levels of repair genes. The possibility remains that DMA(V) may lower damage-induced increases in repair gene expression or cause post-translational modification of repair enzymes.


Assuntos
Ácido Cacodílico/toxicidade , Reparo do DNA/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Bexiga Urinária/efeitos dos fármacos , Urotélio/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Ácido Cacodílico/administração & dosagem , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , DNA Helicases , Reparo do DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Perfilação da Expressão Gênica , Modelos Lineares , Microscopia Eletrônica de Transmissão , Mitocôndrias/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/análise , Ratos , Ratos Endogâmicos F344 , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Bexiga Urinária/citologia , Bexiga Urinária/metabolismo , Urotélio/ultraestrutura , Vacúolos/efeitos dos fármacos , Vacúolos/ultraestrutura , Água , Proteína 1 Complementadora Cruzada de Reparo de Raio-X
12.
Biochem Pharmacol ; 166: 335-346, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31176617

RESUMO

The chimeric antigen receptor T cell (CAR-T cell) immunotherapy currently represents a hot research trend and it is expected to revolutionize the field of cancer therapy. Promising outcomes have been achieved using CAR-T cell therapy for haematological malignancies. Despite encouraging results, several challenges still pose eminent hurdles before being fully recognized. Directing CAR-T cells to target a single tumour associated antigen (TAA) as the case in haematological malignancies might be much simpler than targeting the extensive inhibitory microenvironments associated with solid tumours. This review focuses on the basic principles involved in development of CAR-T cells, emphasizing the differences between humoral IgG, T-cell receptors, CAR and Fcγ-CR constructs. It also highlights the complex inhibitory network that is usually associated with solid tumours, and tackles recent advances in the clinical studies that have provided great hope for the future use of CAR-T cell immunotherapy. While current Fcγ-CR T cell immunotherapy is in pre-clinical stage, is expected to provide a sound therapeutic approach to add to existing classical chemo- and radio-therapeutic modalities.


Assuntos
Imunoterapia Adotiva/métodos , Neoplasias/terapia , Receptores de Antígenos Quiméricos/administração & dosagem , Receptores de IgG/administração & dosagem , Animais , Humanos , Imunoterapia/métodos , Imunoterapia/tendências , Imunoterapia Adotiva/tendências , Neoplasias/imunologia , Receptores de Antígenos Quiméricos/imunologia , Receptores de IgG/imunologia
13.
Am J Stem Cells ; 8(2): 38-51, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31523485

RESUMO

Mesenchymal stem cells (MSCs) are undifferentiated cells that have the ability of self-renewal and trans-differentiation into other cell types. They hold out hope for finding a cure for many diseases. Nevertheless, there are still some obstacles that limit their clinical transplantation. One of these obstacles are the xenogeneic substances added in either proliferation or differentiation media with subsequent immunogenic and infectious transmission problems. In this study, we aimed to replace fetal bovine serum (FBS), the main nutrient source for MSC proliferation with xeno-free blood derivatives. We tested the effect of human activated pure platelet-rich plasma (P-PRP) and advanced platelet-rich fibrin (A-PRF) on the proliferation of human adipose derived-MSCs (AD-MSCs) at different concentrations. For the induction of MSC neural differentiation, we used human cerebrospinal fluid (CSF) at different concentrations in combination with P-PRP to effect xeno-free/species-specific neuronal/glial differentiation and we found that media with 10% CSF and 10% PRP promoted glial differentiation, while media with only 10% PRP induced a neuron-like phenotype.

14.
Acta Histochem ; 120(4): 385-394, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29685720

RESUMO

Programmed cell death is a fundamental event that takes place during organ development and plays an important role in cellular homeostasis. Since various body organs of the camel are under high ecological and physiological stress during food and water deprivation, desiccation, and the long exposure to solar radiation in these desert nomads, we aimed to examine the immunohistochemical expression of apoptosis-related biomarkers in some of its normal body organs to illustrate a basic track for further pathological investigation. Regarding apoptosis, the present study has revealed that the higher expression of cleaved caspase-9 (CC9) [initiator of the intrinsic pathway] and CC3 (effector caspase), and the scanty expression of CC8 (initiator of the extrinsic pathway), highlight the role of the caspase-dependent, intrinsic apoptotic pathway particularly in the intestines and lymphoid organs. The apoptosis- inducing factor (AIF)-immunoexpression was completely missing in the cell nuclei of the examined tissues, indicating the absence of the caspase-independent pathway. The nuclear overexpression of the phospho-histone H2AX (γ H2AX) and the occasional expression of single-stranded DNA, particularly among the CNS neurons, suggest an efficient, protective DNA-repair mechanism in such cells. Thus, despite efficient anti-apoptotic mechanisms intrinsic apoptotic pathways exists in brain, intestine and lymph organs of adult desert camels.


Assuntos
Fator de Indução de Apoptose/química , Apoptose , Biomarcadores/química , Animais , Fator de Indução de Apoptose/metabolismo , Camelus , Caspase 3/química , Imuno-Histoquímica , Modelos Animais
15.
Front Neurol ; 9: 34, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29467713

RESUMO

Ischemic stroke is one of the major health problems worldwide. The only FDA approved anti-thrombotic drug for acute ischemic stroke is the tissue plasminogen activator. Several studies have been devoted to assessing the therapeutic potential of different types of stem cells such as neural stem cells (NSCs), mesenchymal stem cells, embryonic stem cells, and human induced pluripotent stem cell-derived NSCs as treatments for ischemic stroke. The results of these studies are intriguing but many of them have presented conflicting results. Additionally, the mechanism(s) by which engrafted stem/progenitor cells exert their actions are to a large extent unknown. In this review, we will provide a synopsis of different preclinical and clinical studies related to the use of stem cell-based stroke therapy, and explore possible beneficial/detrimental outcomes associated with the use of different types of stem cells. Due to limited/short time window implemented in most of the recorded clinical trials about the use of stem cells as potential therapeutic intervention for stroke, further clinical trials evaluating the efficacy of the intervention in a longer time window after cellular engraftments are still needed.

16.
Anat Rec (Hoboken) ; 290(4): 389-405, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17514763

RESUMO

Arteries of the reproductive tracts of nonpregnant does and does at 4, 7, 10, 13, 16, and 18 weeks of gestation were injected in situ with Microfil. The tracts were fixed, dehydrated, and rendered transparent to reveal the paths of arteries. The tortuous ovarian artery lay in close apposition to the uterine tributary of the ovarian vein, an arrangement that may serve as a local utero-ovarian pathway for the corpus luteum (CL) luteolysis at the end of nonfertile estrous cycle. During pregnancy, this arteriovenous arrangement might transfer luteotropic substances from uterus to ovary, which might serve in maternal recognition of pregnancy and fit the fact that the goat is CL-dependent throughout gestation. In some cases of triplets, the size of the uterine branch of the ovarian artery was equal to or even larger than that of its parent artery and/or the ipsilateral uterine artery, and the vaginal artery contributed a connecting branch to the uterine artery. These physiological adaptations of the ovarian and/or vaginal arteries, which have not previously been described, correlate well with the increasing nutrient demands of the growing multiple fetuses.


Assuntos
Genitália Feminina/irrigação sanguínea , Cabras/anatomia & histologia , Gravidez Múltipla/fisiologia , Adaptação Fisiológica , Animais , Feminino , Genitália Feminina/diagnóstico por imagem , Cabras/fisiologia , Gravidez , Radiografia , Manejo de Espécimes/métodos
17.
J Morphol ; 204(3): 265-280, 1990 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29865717

RESUMO

A light and electron microscopic (TEM and SEM) study of the gut of the black mollie (Poecilia spp.) shows that the gut is a relatively undifferentiated muscular tube lined with a simple columnar epithelium. The mucosa and underlying lamina propria are formed into folds. The apices of the folds form obtuse angles at the cranial end and more acute ones caudally. The mucosal epithelium is a simple columnar sheet with PAS-positive goblet cells interspersed throughout. The enterocytes are covered apically with uniform microvilli in most of the tract, and the plasma membrane deeply infolded basally. Mitochondria are located in the basal folds. A continuous basal lamina separates the epithelial mucosa from the underlying lamina propria. Enterocytes have a PAS-positive Golgi apparatus in the supranuclear region. The enterocytes of the cranial and middle thirds of the gut are morphologically indistinguishable, but those in the caudal third display shorter and sparser microvilli. There is no evidence of pinocytotic activity in the enterocytes of the cranial two thirds of the gut tube, but some apical pinocytotic vesicles are seen in the cells in the caudal third. The tunica muscularis consists of two layers of smooth muscle, inner circular and outer longitudinal. We observe lateral separation of enterocytes from each other deep to the junctional complexes in the caudal and midgut regions. The gut of the mollie lacks some of the specialized cell types commonly found in other fishes. It cannot create an acidic gastric environment; overall control of digestive activity, osmolarity, and ionic balance presumably rest in the structural relationships between epithelial cells and between the epithelium and its supporting tissues. Regional specialization of cells and of the gut as a whole may confer digestive function equivalent to that found in more complicated systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA