Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
PLoS Biol ; 20(5): e3001624, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35617197

RESUMO

Test compounds used on in vitro model systems are conventionally delivered to cell culture wells as fixed concentration bolus doses; however, this poorly replicates the pharmacokinetic (PK) concentration changes seen in vivo and reduces the predictive value of the data. Herein, proof-of-concept experiments were performed using a novel microfluidic device, the Microformulator, which allows in vivo like PK profiles to be applied to cells cultured in microtiter plates and facilitates the investigation of the impact of PK on biological responses. We demonstrate the utility of the device in its ability to reproduce in vivo PK profiles of different oncology compounds over multiweek experiments, both as monotherapy and drug combinations, comparing the effects on tumour cell efficacy in vitro with efficacy seen in in vivo xenograft models. In the first example, an ERK1/2 inhibitor was tested using fixed bolus dosing and Microformulator-replicated PK profiles, in 2 cell lines with different in vivo sensitivities. The Microformulator-replicated PK profiles were able to discriminate between cell line sensitivities, unlike the conventional fixed bolus dosing. In a second study, murine in vivo PK profiles of multiple Poly(ADP-Ribose) Polymerase 1/2 (PARP) and DNA-dependent protein kinase (DNA-PK) inhibitor combinations were replicated in a FaDu cell line resulting in a reduction in cell growth in vitro with similar rank ordering to the in vivo xenograft model. Additional PK/efficacy insight into theoretical changes to drug exposure profiles was gained by using the Microformulator to expose FaDu cells to the DNA-PK inhibitor for different target coverage levels and periods of time. We demonstrate that the Microformulator enables incorporating PK exposures into cellular assays to improve in vitro-in vivo translation understanding for early therapeutic insight.


Assuntos
Técnicas de Cultura de Células , Microfluídica , Animais , DNA , Humanos , Camundongos , Modelos Biológicos
2.
BMC Cancer ; 22(1): 1107, 2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36309653

RESUMO

BACKGROUND: AZD0156 is an oral inhibitor of ATM, a serine threonine kinase that plays a key role in DNA damage response (DDR) associated with double-strand breaks. Topoisomerase-I inhibitor irinotecan is used clinically to treat colorectal cancer (CRC), often in combination with 5-fluorouracil (5FU). AZD0156 in combination with irinotecan and 5FU was evaluated in preclinical models of CRC to determine whether low doses of AZD0156 enhance the cytotoxicity of irinotecan in chemotherapy regimens used in the clinic. METHODS: Anti-proliferative effects of single-agent AZD0156, the active metabolite of irinotecan (SN38), and combination therapy were evaluated in 12 CRC cell lines. Additional assessment with clonogenic assay, cell cycle analysis, and immunoblotting were performed in 4 selected cell lines. Four colorectal cancer patient derived xenograft (PDX) models were treated with AZD0156, irinotecan, or 5FU alone and in combination for assessment of tumor growth inhibition (TGI). Immunofluorescence was performed on tumor tissues. The DDR mutation profile was compared across in vitro and in vivo models. RESULTS: Enhanced effects on cellular proliferation and regrowth were observed with the combination of AZD0156 and SN38 in select models. In cell cycle analysis of these models, increased G2/M arrest was observed with combination treatment over either single agent. Immunoblotting results suggest an increase in DDR associated with irinotecan therapy, with a reduced effect noted when combined with AZD0156, which is more pronounced in some models. Increased TGI was observed with the combination of AZD0156 and irinotecan as compared to single-agent therapy in some PDX models. The DDR mutation profile was variable across models. CONCLUSIONS: AZD0156 and irinotecan provide a rational and active combination in preclinical colorectal cancer models. Variability across in vivo and in vitro results may be related to the variable DDR mutation profiles of the models evaluated. Further understanding of the implications of individual DDR mutation profiles may help better identify patients more likely to benefit from treatment with the combination of AZD0156 and irinotecan in the clinical setting.


Assuntos
Neoplasias Colorretais , Fluoruracila , Humanos , Irinotecano/uso terapêutico , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Pontos de Checagem da Fase G2 do Ciclo Celular , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Camptotecina , Proteínas Mutadas de Ataxia Telangiectasia/genética
3.
Br J Cancer ; 123(9): 1424-1436, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32741974

RESUMO

BACKGROUND: Personalised medicine strategies may improve outcomes in pancreatic ductal adenocarcinoma (PDAC), but validation of predictive biomarkers is required. Having developed a clinical trial to assess the ATR inhibitor, AZD6738, in combination with gemcitabine (ATRi/gem), we investigated ATM loss as a predictive biomarker of response to ATRi/gem in PDAC. METHODS: Through kinase inhibition, siRNA depletion and CRISPR knockout of ATM, we assessed how ATM targeting affected the sensitivity of PDAC cells to ATRi/gem. Using flow cytometry, immunofluorescence and immunoblotting, we investigated how ATRi/gem synergise in ATM-proficient and ATM-deficient cells, before assessing the impact of ATM loss on ATRi/gem sensitivity in vivo. RESULTS: Complete loss of ATM function (through pharmacological inhibition or CRISPR knockout), but not siRNA depletion, sensitised to ATRi/gem. In ATM-deficient cells, ATRi/gem-induced replication catastrophe was augmented, while phospho-Chk2-T68 and phospho-KAP1-S824 persisted via DNA-PK activity. ATRi/gem caused growth delay in ATM-WT xenografts in NSG mice and induced regression in ATM-KO xenografts. CONCLUSIONS: ATM loss augments replication catastrophe-mediated cell death induced by ATRi/gem and may predict clinical responsiveness to this combination. ATM status should be carefully assessed in tumours from patients with PDAC, since distinction between ATM-low and ATM-null could be critical in maximising the success of clinical trials using ATM expression as a predictive biomarker.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Carcinoma Ductal Pancreático/tratamento farmacológico , Desoxicitidina/análogos & derivados , Neoplasias Pancreáticas/tratamento farmacológico , Piridinas/farmacologia , Pirimidinas/farmacologia , Quinolinas/farmacologia , Sulfóxidos/farmacologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/fisiologia , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Sinergismo Farmacológico , Feminino , Técnicas de Inativação de Genes , Humanos , Indóis , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Morfolinas , Neoplasias Pancreáticas/patologia , Piridinas/administração & dosagem , Pirimidinas/administração & dosagem , Quinolinas/administração & dosagem , RNA Interferente Pequeno/farmacologia , Sulfonamidas , Sulfóxidos/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
4.
Br J Cancer ; 119(10): 1233-1243, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30385821

RESUMO

BACKGROUND: AZD0156 and AZD6738 are potent and selective inhibitors of ataxia-telangiectasia-kinase (ATM) and ataxia-telangiectasia-mutated and Rad3-related (ATR), respectively, important sensors/signallers of DNA damage. METHODS: We used multiplexed targeted-mass-spectrometry to select pRAD50(Ser635) as a pharmacodynamic biomarker for AZD0156-mediated ATM inhibition from a panel of 45 peptides, then developed and tested a clinically applicable immunohistochemistry assay for pRAD50(Ser635) detection in FFPE tissue. RESULTS: We found moderate pRAD50 baseline levels across cancer indications. pRAD50 was detectable in 100% gastric cancers (n = 23), 99% colorectal cancers (n = 102), 95% triple-negative-breast cancers (TNBC) (n = 40) and 87.5% glioblastoma-multiformes (n = 16). We demonstrated AZD0156 target inhibition in TNBC patient-derived xenograft models; where AZD0156 monotherapy or post olaparib treatment, resulted in a 34-72% reduction in pRAD50. Similar inhibition of pRAD50 (68%) was observed following ATM inhibitor treatment post irinotecan in a colorectal cancer xenograft model. ATR inhibition, using AZD6738, increased pRAD50 in the ATM-proficient models whilst in ATM-deficient models the opposite was observed, suggesting pRAD50 pharmacodynamics post ATR inhibition may be ATM-dependent and could be useful to determine ATM functionality in patients treated with ATR inhibitors. CONCLUSION: Together these data support clinical utilisation of pRAD50 as a biomarker of AZD0156 and AZD6738 pharmacology to elucidate clinical pharmacokinetic/pharmacodynamic relationships, thereby informing recommended Phase 2 dose/schedule.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Espectrometria de Massas/métodos , Animais , Antineoplásicos/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Biomarcadores/metabolismo , Linhagem Celular , Dano ao DNA , Humanos , Imuno-Histoquímica , Indóis , Irinotecano/farmacologia , Camundongos , Camundongos Nus , Morfolinas , Ftalazinas/farmacologia , Piperazinas/farmacologia , Piridinas/farmacologia , Piridinas/uso terapêutico , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Quinolinas/farmacologia , Quinolinas/uso terapêutico , Transdução de Sinais , Sulfonamidas , Sulfóxidos/farmacologia , Sulfóxidos/uso terapêutico , Neoplasias de Mama Triplo Negativas , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Clin Cancer Res ; 30(3): 629-637, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-37982819

RESUMO

PURPOSE: Patients with advanced soft-tissue sarcomas (STS) exhibit a poor prognosis and have few therapeutic options. DNA-dependent protein kinase (DNA-PK) catalytic subunit is a multifunctional serine-threonine protein kinase that plays a crucial role in DNA double-strand damage repair via nonhomologous end joining. EXPERIMENTAL DESIGN: To investigate the therapeutic potential of DNA-PK targeting in STS, we first evaluated the prognostic value of DNA-PK expression in two large cohorts of patients with STS. We then used the potent and selective DNA-PK inhibitor AZD7648 compound to investigate the antitumor effect of the pharmacologic inhibition of DNA-PK in vitro via MTT, apoptosis, cell cycle, and proliferation assays. In vivo studies were performed with patient-derived xenograft models to evaluate the effects of AZD7648 in combination with chemotherapy or ionizing radiation on tumor growth. The mechanisms of sensitivity and resistance to DNA-PK inhibition were investigated by using a genome-wide CRISPR-Cas9 positive screen. RESULTS: DNA-PK overexpression is significantly associated with poor prognosis in patients with sarcomas. Selective pharmacologic inhibition of DNA-PK strongly synergizes with radiation- and doxorubicin-based regimen in sarcoma models. By using a genome-wide CRISPR-Cas9 positive screen, we identified genes involved in sensitivity to DNA-PK inhibition. CONCLUSIONS: DNA-PK inhibition deserves clinical investigation to improve response to current therapies in patients with sarcoma.


Assuntos
Sarcoma , Neoplasias de Tecidos Moles , Humanos , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Proteína Quinase Ativada por DNA , Sarcoma/tratamento farmacológico , Sarcoma/genética , Sarcoma/radioterapia , Reparo do DNA , DNA , Radiação Ionizante , Linhagem Celular Tumoral
6.
J Med Chem ; 67(4): 3090-3111, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38306388

RESUMO

The inhibition of ataxia-telangiectasia mutated (ATM) has been shown to chemo- and radio-sensitize human glioma cells in vitro and therefore might provide an exciting new paradigm in the treatment of glioblastoma multiforme (GBM). The effective treatment of GBM will likely require a compound with the potential to efficiently cross the blood-brain barrier (BBB). Starting from clinical candidate AZD0156, 4, we investigated the imidazoquinolin-2-one scaffold with the goal of improving likely CNS exposure in humans. Strategies aimed at reducing hydrogen bonding, basicity, and flexibility of the molecule were explored alongside modulating lipophilicity. These studies identified compound 24 (AZD1390) as an exceptionally potent and selective inhibitor of ATM with a good preclinical pharmacokinetic profile. 24 showed an absence of human transporter efflux in MDCKII-MDR1-BCRP studies (efflux ratio <2), significant BBB penetrance in nonhuman primate PET studies (Kp,uu 0.33) and was deemed suitable for development as a clinical candidate to explore the radiosensitizing effects of ATM in intracranial malignancies.


Assuntos
Ataxia Telangiectasia , Glioblastoma , Piridinas , Quinolonas , Animais , Humanos , Barreira Hematoencefálica/metabolismo , Ataxia Telangiectasia/tratamento farmacológico , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Neoplasias , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Glioblastoma/tratamento farmacológico
7.
Nat Commun ; 15(1): 1700, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402224

RESUMO

The Ataxia telangiectasia and Rad3-related (ATR) inhibitor ceralasertib in combination with the PD-L1 antibody durvalumab demonstrated encouraging clinical benefit in melanoma and lung cancer patients who progressed on immunotherapy. Here we show that modelling of intermittent ceralasertib treatment in mouse tumor models reveals CD8+ T-cell dependent antitumor activity, which is separate from the effects on tumor cells. Ceralasertib suppresses proliferating CD8+ T-cells on treatment which is rapidly reversed off-treatment. Ceralasertib causes up-regulation of type I interferon (IFNI) pathway in cancer patients and in tumor-bearing mice. IFNI is experimentally found to be a major mediator of antitumor activity of ceralasertib in combination with PD-L1 antibody. Improvement of T-cell function after ceralasertib treatment is linked to changes in myeloid cells in the tumor microenvironment. IFNI also promotes anti-proliferative effects of ceralasertib on tumor cells. Here, we report that broad immunomodulatory changes following intermittent ATR inhibition underpins the clinical therapeutic benefit and indicates its wider impact on antitumor immunity.


Assuntos
Linfócitos T CD8-Positivos , Indóis , Morfolinas , Neoplasias , Pirimidinas , Sulfonamidas , Humanos , Animais , Camundongos , Antígeno B7-H1 , Microambiente Tumoral , Linhagem Celular Tumoral , Imunoterapia , Modelos Animais de Doenças , Proteínas Mutadas de Ataxia Telangiectasia
8.
Am J Respir Crit Care Med ; 185(1): 34-43, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21997333

RESUMO

RATIONALE: Inflammation and oxidative stress are linked to the deleterious effects of cigarette smoke in producing chronic obstructive pulmonary disease (COPD). Myeloperoxidase (MPO), a neutrophil and macrophage product, is important in bacterial killing, but also drives inflammatory reactions and tissue oxidation. OBJECTIVES: To determine the role of MPO in COPD. METHODS: We treated guinea pigs with a 2-thioxanthine MPO inhibitor, AZ1, in a 6-month cigarette smoke exposure model, with one group receiving compound from Smoking Day 1 and another group treated after 3 months of smoke exposure. RESULTS: At 6 months both treatments abolished smoke-induced increases in lavage inflammatory cells, largely ameliorated physiological changes, and prevented or stopped progression of morphologic emphysema and small airway remodeling. Cigarette smoke caused a marked increase in immunohistochemical staining for the myeloperoxidase-generated protein oxidation marker dityrosine, and this effect was considerably decreased with both treatment arms. Serum 8-isoprostane, another marker of oxidative stress, showed similar trends. Both treatments also prevented muscularization of the small intrapulmonary arteries, but only partially ameliorated smoke-induced pulmonary hypertension. Acutely, AZ1 prevented smoke-induced increases in expression of cytokine mediators and nuclear factor-κB binding. CONCLUSIONS: We conclude that an MPO inhibitor is able to stop progression of emphysema and small airway remodeling and to partially protect against pulmonary hypertension, even when treatment starts relatively late in the course of long-term smoke exposure, suggesting that inhibition of MPO may be a novel and useful therapeutic treatment for COPD. Protection appears to relate to inhibition of oxidative damage and down-regulation of the smoke-induced inflammatory response.


Assuntos
Inibidores Enzimáticos/farmacologia , Peroxidase/antagonistas & inibidores , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/metabolismo , Purinas/uso terapêutico , Fumar/efeitos adversos , Tionas/uso terapêutico , Remodelação das Vias Aéreas/efeitos dos fármacos , Animais , Dinoprosta/análogos & derivados , Dinoprosta/sangue , Modelos Animais de Doenças , Progressão da Doença , Feminino , Cobaias , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/prevenção & controle , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/prevenção & controle , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Peroxidase/metabolismo , Doença Pulmonar Obstrutiva Crônica/etiologia , Tioxantenos/antagonistas & inibidores , Tioxantenos/metabolismo , Tirosina/análogos & derivados , Tirosina/efeitos dos fármacos
9.
CPT Pharmacometrics Syst Pharmacol ; 12(11): 1640-1652, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37722071

RESUMO

Dosage optimization to maximize efficacy and minimize toxicity is a potential issue when administering radiotherapy (RT) in combination with immune checkpoint blockade (ICB) or inhibitors of the DNA Damage Response Pathway (DDRi) in the clinic. Preclinical models and mathematical modeling can help identify ideal dosage schedules to observe beneficial effects of a tri-therapy. The aim of this study is to describe a mathematical model to capture the impact of RT in combination with inhibitors of the DNA Damage Response Pathway or blockade of the immune checkpoint protein - programmed death ligand 1 (PD-L1). This model describes how RT mediated activation of antigen presenting cells can induce an increase in cytolytic T cells capable of targeting tumor cells, and how combination drugs can potentiate the immune response by inhibiting the rate of T cell exhaustion. The model was fitted using preclinical data, where MC38 tumors were treated in vivo with RT alone or in combination with anti-PD-L1 as well as with either olaparib or the ataxia telangiectasia mutated (ATM) inhibitor-AZD0156. The model successfully described the observed data and goodness-of-fit, using visual predictive checks also confirmed a successful internal model validation for each treatment modality. The results demonstrated that the anti-PD-L1 effect in combination with RT was maximal in vivo and any additional benefit of DDRi at the given dosage and schedule used was undetectable. Model fit results indicated AZD0156 to be a more potent DDRi than olaparib. Simulations of alternative doses indicated that reducing efficacy of anti-PD-L1 by 68% would potentially provide evidence for a benefit of ATM inhibition in combination with ICB and increase the relative efficacy of tri-therapy.


Assuntos
Antígeno B7-H1 , Inibidores de Checkpoint Imunológico , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Dano ao DNA
10.
Cancers (Basel) ; 15(16)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37627223

RESUMO

Ataxia-telangiectasia mutated gene (ATM) is a key component of the DNA damage response (DDR) and double-strand break repair pathway. The functional loss of ATM (ATM deficiency) is hypothesised to enhance sensitivity to DDR inhibitors (DDRi). Whole-exome sequencing (WES), immunohistochemistry (IHC), and Western blotting (WB) were used to characterise the baseline ATM status across a panel of ATM mutated patient-derived xenograft (PDX) models from a range of tumour types. Antitumour efficacy was assessed with poly(ADP-ribose)polymerase (PARP, olaparib), ataxia- telangiectasia and rad3-related protein (ATR, AZD6738), and DNA-dependent protein kinase (DNA-PK, AZD7648) inhibitors as a monotherapy or in combination to associate responses with ATM status. Biallelic truncation/frameshift ATM mutations were linked to ATM protein loss while monoallelic or missense mutations, including the clinically relevant recurrent R3008H mutation, did not confer ATM protein loss by IHC. DDRi agents showed a mixed response across the PDX's but with a general trend toward greater activity, particularly in combination in models with biallelic ATM mutation and protein loss. A PDX with an ATM splice-site mutation, 2127T > C, with a high relative baseline ATM expression and KAP1 phosphorylation responded to all DDRi treatments. These data highlight the heterogeneity and complexity in describing targetable ATM-deficiencies and the fact that current patient selection biomarker methods remain imperfect; although, complete ATM loss was best able to enrich for DDRi sensitivity.

11.
Nat Commun ; 14(1): 4761, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37580318

RESUMO

Genome editing, specifically CRISPR/Cas9 technology, has revolutionized biomedical research and offers potential cures for genetic diseases. Despite rapid progress, low efficiency of targeted DNA integration and generation of unintended mutations represent major limitations for genome editing applications caused by the interplay with DNA double-strand break repair pathways. To address this, we conduct a large-scale compound library screen to identify targets for enhancing targeted genome insertions. Our study reveals DNA-dependent protein kinase (DNA-PK) as the most effective target to improve CRISPR/Cas9-mediated insertions, confirming previous findings. We extensively characterize AZD7648, a selective DNA-PK inhibitor, and find it to significantly enhance precise gene editing. We further improve integration efficiency and precision by inhibiting DNA polymerase theta (PolÏ´). The combined treatment, named 2iHDR, boosts templated insertions to 80% efficiency with minimal unintended insertions and deletions. Notably, 2iHDR also reduces off-target effects of Cas9, greatly enhancing the fidelity and performance of CRISPR/Cas9 gene editing.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Sistemas CRISPR-Cas/genética , Proteínas Quinases/genética , Reparo do DNA/genética , DNA/genética
12.
Bioorg Med Chem Lett ; 22(1): 689-95, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22079756

RESUMO

Libraries of dibasic compounds designed around the molecular scaffold of the DA(2)/ß(2) dual agonist sibenadet (Viozan™) have yielded a number of promising starting points that have been further optimised into novel potent and selective target molecules with required pharmacokinetic properties. From a shortlist, 31 was discovered as a novel, high potency, and highly efficacious ß(2)-agonist with high selectivity and a duration of action commensurable with once daily dosing.


Assuntos
Agonistas Adrenérgicos beta/síntese química , Agonistas Adrenérgicos beta/farmacologia , Química Farmacêutica/métodos , Animais , Asma/tratamento farmacológico , Broncodilatadores/farmacologia , Linhagem Celular Tumoral , AMP Cíclico/metabolismo , Desenho de Fármacos , Cobaias , Humanos , Concentração Inibidora 50 , Modelos Químicos , Ligação Proteica , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Tiazóis/farmacologia , Fatores de Tempo
13.
Mol Cancer Ther ; 21(4): 555-567, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35149547

RESUMO

Ovarian cancer is the deadliest gynecologic cancer, with a 5-year survival rate of 30%, when the disease has spread throughout the peritoneal cavity. We investigated the efficacy to delay disease progression by the DNA-dependent protein kinase (DNA-PK) inhibitor AZD7648, administered in combination with two of the therapeutic options for patient management: either pegylated liposomal doxorubicin (PLD) or the PARP inhibitor olaparib. Patient-derived ovarian cancer xenografts (OC-PDX) were transplanted subcutaneously to evaluate the effect of treatment on tumor growth, or orthotopically in the peritoneal cavity to evaluate the effect on metastatic spread. AZD7648 was administered orally in combination with PLD (dosed intravenously) or with olaparib (orally). To prove the inhibition of DNA-PK in the tumors, we measured pDNA-PKcs, pRPA32, and γH2AX, biomarkers of DNA-PK activity. AZD7648 enhanced the therapeutic efficacy of PLD in all the OC-PDXs tested, regardless of their BRCA status or sensitivity to cisplatin or PLD. The treatment caused disease stabilization, which persisted despite therapy discontinuation for tumors growing subcutaneously, and significantly impaired the abdominal metastatic dissemination, prolonging the lifespan of mice implanted orthotopically. AZD7648 potentiated the efficacy of olaparib in BRCA-deficient OC-PDXs but did not sensitize BRCA-proficient OC-PDXs to olaparib, despite an equivalent inhibition of DNA-PK, suggesting the need of a preexisting olaparib activity to benefit from the addition of AZD7648. This work suggests that AZD7648, an inhibitor of DNA-PK, dosed in combination with PLD or olaparib is an exciting therapeutic option that could benefit patients with ovarian cancer and should be explored in clinical trials.


Assuntos
Neoplasias Ovarianas , Inibidores de Proteínas Quinases , Animais , Linhagem Celular Tumoral , DNA/uso terapêutico , Doxorrubicina/análogos & derivados , Feminino , Xenoenxertos , Humanos , Camundongos , Neoplasias Ovarianas/patologia , Ftalazinas , Piperazinas , Polietilenoglicóis , Inibidores de Proteínas Quinases/uso terapêutico , Purinas , Piranos , Triazóis
14.
ACS Med Chem Lett ; 13(8): 1295-1301, 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-35978693

RESUMO

The DNA-PK complex is activated by double-strand DNA breaks and regulates the non-homologous end-joining repair pathway; thus, targeting DNA-PK by inhibiting the DNA-PK catalytic subunit (DNA-PKcs) is potentially a useful therapeutic approach for oncology. A previously reported series of neutral DNA-PKcs inhibitors were modified to incorporate a basic group, with the rationale that increasing the volume of distribution while maintaining good metabolic stability should increase the half-life. However, adding a basic group introduced hERG activity, and basic compounds with modest hERG activity (IC50 = 10-15 µM) prolonged QTc (time from the start of the Q wave to the end of the T wave, corrected by heart rate) in an anaesthetized guinea pig cardiovascular model. Further optimization was necessary, including modulation of pK a, to identify compound 18, which combines low hERG activity (IC50 = 75 µM) with excellent kinome selectivity and favorable pharmacokinetic properties.

15.
Clin Cancer Res ; 28(20): 4536-4550, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-35921524

RESUMO

PURPOSE: PARP inhibitors (PARPi) induce synthetic lethality in homologous recombination repair (HRR)-deficient tumors and are used to treat breast, ovarian, pancreatic, and prostate cancers. Multiple PARPi resistance mechanisms exist, most resulting in restoration of HRR and protection of stalled replication forks. ATR inhibition was highlighted as a unique approach to reverse both aspects of resistance. Recently, however, a PARPi/WEE1 inhibitor (WEE1i) combination demonstrated enhanced antitumor activity associated with the induction of replication stress, suggesting another approach to tackling PARPi resistance. EXPERIMENTAL DESIGN: We analyzed breast and ovarian patient-derived xenoimplant models resistant to PARPi to quantify WEE1i and ATR inhibitor (ATRi) responses as single agents and in combination with PARPi. Biomarker analysis was conducted at the genetic and protein level. Metabolite analysis by mass spectrometry and nucleoside rescue experiments ex vivo were also conducted in patient-derived models. RESULTS: Although WEE1i response was linked to markers of replication stress, including STK11/RB1 and phospho-RPA, ATRi response associated with ATM mutation. When combined with olaparib, WEE1i could be differentiated from the ATRi/olaparib combination, providing distinct therapeutic strategies to overcome PARPi resistance by targeting the replication stress response. Mechanistically, WEE1i sensitivity was associated with shortage of the dNTP pool and a concomitant increase in replication stress. CONCLUSIONS: Targeting the replication stress response is a valid therapeutic option to overcome PARPi resistance including tumors without an underlying HRR deficiency. These preclinical insights are now being tested in several clinical trials where the PARPi is administered with either the WEE1i or the ATRi.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Antineoplásicos/uso terapêutico , Proteínas Mutadas de Ataxia Telangiectasia , Proteína BRCA1/genética , Biomarcadores , Carcinoma Epitelial do Ovário/tratamento farmacológico , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Feminino , Humanos , Nucleosídeos/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Ftalazinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo
16.
Bioorg Med Chem Lett ; 21(15): 4612-6, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21723724

RESUMO

Starting with the molecular scaffold of the DA(2)/ß(2) dual agonist sibenadet (Viozan™), a number of molecular changes were incorporated, which were designed to increase the potency and selectivity of the target molecule, and improve its pharmacokinetics. Through this process a novel, high potency, full ß(2)-agonist with high selectivity and long duration capable of being dosed once daily has been discovered.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2/química , Broncodilatadores/química , Receptores Adrenérgicos beta 2/química , Tiazóis/química , Agonistas de Receptores Adrenérgicos beta 2/síntese química , Agonistas de Receptores Adrenérgicos beta 2/farmacocinética , Animais , Broncodilatadores/síntese química , Broncodilatadores/farmacocinética , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Cobaias , Receptores Adrenérgicos beta 2/metabolismo , Relação Estrutura-Atividade , Tiazóis/síntese química , Tiazóis/farmacocinética
17.
Bioorg Med Chem Lett ; 21(13): 4027-31, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21652207

RESUMO

The design and synthesis of a new series of high efficacy ß(2)-agonists devoid of the key benzylic alcohol present in previously described highly efficacious ß(2)-agonists is reported. A hypothesis for the unprecedented level of efficacy is proposed based on considerations of ß(2)-adrenoceptor crystal structure, other biophysical data and modeling studies.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2/síntese química , Desenho de Fármacos , Agonistas de Receptores Adrenérgicos beta 2/química , Animais , Brônquios/citologia , Linhagem Celular , Cristalografia por Raios X , Humanos , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
18.
Clin Cancer Res ; 27(15): 4353-4366, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34011558

RESUMO

PURPOSE: Combining radiotherapy (RT) with DNA damage response inhibitors may lead to increased tumor cell death through radiosensitization. DNA-dependent protein kinase (DNA-PK) plays an important role in DNA double-strand break repair via the nonhomologous end joining (NHEJ) pathway. We hypothesized that in addition to a radiosensitizing effect from the combination of RT with AZD7648, a potent and specific inhibitor of DNA-PK, combination therapy may also lead to modulation of an anticancer immune response. EXPERIMENTAL DESIGN: AZD7648 and RT efficacy, as monotherapy and in combination, was investigated in fully immunocompetent mice in MC38, CT26, and B16-F10 models. Immunologic consequences were analyzed by gene expression and flow-cytometric analysis. RESULTS: AZD7648, when delivered in combination with RT, induced complete tumor regressions in a significant proportion of mice. The antitumor efficacy was dependent on the presence of CD8+ T cells but independent of NK cells. Analysis of the tumor microenvironment revealed a reduction in T-cell PD-1 expression, increased NK-cell granzyme B expression, and elevated type I IFN signaling in mice treated with the combination when compared with RT treatment alone. Blocking of the type I IFN receptor in vivo also demonstrated a critical role for type I IFN in tumor growth control following combined therapy. Finally, this combination was able to generate tumor antigen-specific immunologic memory capable of suppressing tumor growth following rechallenge. CONCLUSIONS: Blocking the NHEJ DNA repair pathway with AZD7648 in combination with RT leads to durable immune-mediated tumor control.


Assuntos
Linhagem Celular Tumoral/efeitos da radiação , Proteína Quinase Ativada por DNA/antagonistas & inibidores , Interferon Tipo I/efeitos dos fármacos , Neoplasias/radioterapia , Inibidores de Proteínas Quinases/farmacologia , Purinas/farmacologia , Piranos/farmacologia , Radiossensibilizantes/farmacologia , Triazóis/farmacologia , Animais , Camundongos
19.
Commun Biol ; 4(1): 1001, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34429505

RESUMO

Microphysiological in vitro systems are platforms for preclinical evaluation of drug effects and significant advances have been made in recent years. However, existing microfluidic devices are not yet able to deliver compounds to cell models in a way that reproduces the real physiological drug exposure. Here, we introduce a novel tumour-on-chip microfluidic system that mimics the pharmacokinetic profile of compounds on 3D tumour spheroids to evaluate their response to the treatments. We used this platform to test the response of SW620 colorectal cancer spheroids to irinotecan (SN38) alone and in combination with the ATM inhibitor AZD0156, using concentrations mimicking mouse plasma exposure profiles of both agents. We explored spheroid volume and viability as a measure of cancer cells response and changes in mechanistically relevant pharmacodynamic biomarkers (γH2AX, cleaved-caspase 3 and Ki67). We demonstrate here that our microfluidic tumour-on-chip platform can successfully predict the efficacy from in vivo studies and therefore represents an innovative tool to guide drug dose and schedules for optimal efficacy and pharmacodynamic assessment, while reducing the need for animal studies.


Assuntos
Antineoplásicos/farmacocinética , Irinotecano/farmacocinética , Piridinas/farmacocinética , Quinolinas/farmacocinética , Linhagem Celular Tumoral , Humanos , Técnicas Analíticas Microfluídicas , Esferoides Celulares
20.
Sci Transl Med ; 13(607)2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34408079

RESUMO

Cancers overcome replicative immortality by activating either telomerase or an alternative lengthening of telomeres (ALT) mechanism. ALT occurs in ~25% of high-risk neuroblastomas, and progression in patients with ALT neuroblastoma during or after front-line therapy is frequent and often fatal. Temozolomide + irinotecan is commonly used as salvage therapy for neuroblastoma. Patient-derived cell lines and xenografts established from patients with relapsed ALT neuroblastoma demonstrated de novo resistance to temozolomide + irinotecan [SN-38 in vitro, P < 0.05; in vivo mouse event-free survival (EFS), P < 0.0001] vs. telomerase-positive neuroblastomas. We observed that ALT neuroblastoma cells manifested constitutive ataxia-telangiectasia mutated (ATM) activation due to spontaneous telomere dysfunction which was not observed in telomerase-positive neuroblastoma cells. We demonstrated that induction of telomere dysfunction resulted in ATM activation that, in turn, conferred resistance to temozolomide + SN-38 (4.2-fold change in IC50, P < 0.001). ATM knockdown (shRNA) or inhibition using a clinical-stage small-molecule inhibitor (AZD0156) reversed resistance to temozolomide + irinotecan in ALT neuroblastoma cell lines in vitro (P < 0.001) and in four ALT xenografts in vivo (EFS, P < 0.0001). AZD0156 showed modest to no enhancement of temozolomide + irinotecan activity in telomerase-positive neuroblastoma cell lines and xenografts. Ataxia telangiectasia and Rad3 related (ATR) inhibition using AZD6738 did not enhance temozolomide + SN-38 activity in ALT neuroblastoma cells. Thus, ALT neuroblastoma chemotherapy resistance occurs via ATM activation and is reversible with ATM inhibitor AZD0156. Combining AZD0156 with temozolomide + irinotecan warrants clinical testing for neuroblastoma.


Assuntos
Ataxia Telangiectasia , Neuroblastoma , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Resistencia a Medicamentos Antineoplásicos , Humanos , Camundongos , Recidiva Local de Neoplasia , Neuroblastoma/tratamento farmacológico , Piridinas , Quinolinas , Telômero , Homeostase do Telômero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA