Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Euro Surveill ; 27(10)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35272748

RESUMO

BackgroundThroughout the COVID-19 pandemic, SARS-CoV-2 genetic variants of concern (VOCs) have repeatedly and independently arisen. VOCs are characterised by increased transmissibility, increased virulence or reduced neutralisation by antibodies obtained from prior infection or vaccination. Tracking the introduction and transmission of VOCs relies on sequencing, typically whole genome sequencing of clinical samples. Wastewater surveillance is increasingly used to track the introduction and spread of SARS-CoV-2 variants through sequencing approaches.AimHere, we adapt and apply a rapid, high-throughput method for detection and quantification of the relative frequency of two deletions characteristic of the Alpha, Beta, and Gamma VOCs in wastewater.MethodsWe developed drop-off RT-dPCR assays and an associated statistical approach implemented in the R package WWdPCR to analyse temporal dynamics of SARS-CoV-2 signature mutations (spike Δ69-70 and ORF1a Δ3675-3677) in wastewater and quantify transmission fitness advantage of the Alpha VOC.ResultsBased on analysis of Zurich wastewater samples, the estimated transmission fitness advantage of SARS-CoV-2 Alpha based on the spike Δ69-70 was 0.34 (95% confidence interval (CI): 0.30-0.39) and based on ORF1a Δ3675-3677 was 0.53 (95% CI: 0.49-0.57), aligning with the transmission fitness advantage of Alpha estimated by clinical sample sequencing in the surrounding canton of 0.49 (95% CI: 0.38-0.61).ConclusionDigital PCR assays targeting signature mutations in wastewater offer near real-time monitoring of SARS-CoV-2 VOCs and potentially earlier detection and inference on transmission fitness advantage than clinical sequencing.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Humanos , Pandemias , Reação em Cadeia da Polimerase , SARS-CoV-2/genética , Suíça/epidemiologia , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias
2.
Environ Sci Technol ; 53(12): 7055-7067, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31082211

RESUMO

Container-based sanitation (CBS) within a comprehensive service system value chain offers a low-cost sanitation option with potential for revenue generation but may increase microbial health risks to sanitation service workers. This study assessed occupational exposure to rotavirus and Shigella spp. during CBS urine collection and subsequent struvite fertilizer production in eThekwini, South Africa. Primary data included high resolution sequences of hand-object contacts from annotated video and measurement of fecal contamination from urine and surfaces likely to be contacted. A stochastic model incorporated chronological surface contacts, pathogen concentrations in urine, and literature data on transfer efficiencies of pathogens to model pathogen concentrations on hands and risk of infection from hand-to-mouth contacts. The probability of infection was highest from exposure to rotavirus during urine collection (∼10-1) and struvite production (∼10-2), though risks from Shigella spp. during urine collection (∼10-3) and struvite production (∼10-4) were non-negligible. Notably, risk of infection was higher during urine collection than during struvite production due to contact with contaminated urine transport containers. In the scale-up of CBS, disinfection of urine transport containers is expected to reduce pathogen transmission. Exposure data from this study can be used to evaluate the effectiveness of measures to protect sanitation service workers.


Assuntos
Rotavirus , Saneamento , Humanos , África do Sul , Estruvita , Coleta de Urina
3.
Appl Environ Microbiol ; 84(24)2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30315075

RESUMO

Soils in household environments in low- and middle-income countries may play an important role in the persistence, proliferation, and transmission of Escherichia coli Our goal was to investigate the risk factors for detection, survival, and growth of E. coli in soils collected from household plots. E. coli was enumerated in soil and fecal samples from humans, chickens, and cattle from 52 households in rural Bangladesh. Associations between E. coli concentrations in soil, household-level risk factors, and soil physicochemical characteristics were investigated. Susceptibility to 16 antibiotics and the presence of intestinal pathotypes were evaluated for 175 E. coli isolates. The growth and survival of E. coli in microcosms using soil collected from the households were also assessed. E. coli was isolated from 44.2% of the soil samples, with an average of 1.95 log10 CFU/g dry soil. Soil moisture and clay content were associated with E. coli concentrations in soil, whereas no household-level risk factor was significantly correlated. Antibiotic resistance and pathogenicity were common among E. coli isolates, with 42.3% resistant to at least one antibiotic, 12.6% multidrug resistant (≥3 classes), and 10% potentially pathogenic. Soil microcosms demonstrate growth and/or survival of E. coli, including an enteropathogenic extended-spectrum beta-lactamase (ESBL)-producing isolate, in some, but not all, of the household soils tested. In rural Bangladesh, defined soil physicochemical characteristics appear more influential for E. coli detection in soils than household-level risk factors. Soils may act as reservoirs in the transmission of antibiotic-resistant and potentially pathogenic E. coli and therefore may impact the effectiveness of water, sanitation, and hygiene interventions.IMPORTANCE Soil may represent a direct source or act as an intermediary for the transmission of antibiotic-resistant and pathogenic Escherichia coli strains, particularly in low-income and rural settings. Thus, determining risk factors associated with detection, growth, and long-term survival of E. coli in soil environments is important for public health. Here, we demonstrate that household soils in rural Bangladesh are reservoirs for antibiotic-resistant and potentially pathogenic E. coli strains and can support E. coli growth and survival, and defined soil physicochemical characteristics are drivers of E. coli survival in this environment. In contrast, we found no evidence that household-level factors, including water, sanitation, and hygiene indicators, were associated with E. coli contamination of household soils.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/isolamento & purificação , Características da Família , Microbiologia do Solo , Animais , Bangladesh , Bovinos , Galinhas , DNA Bacteriano , Diarreia/microbiologia , Farmacorresistência Bacteriana/genética , Escherichia coli Enteropatogênica/efeitos dos fármacos , Escherichia coli Enteropatogênica/genética , Escherichia coli Enteropatogênica/crescimento & desenvolvimento , Escherichia coli Enteropatogênica/isolamento & purificação , Monitoramento Ambiental , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Fezes/microbiologia , Humanos , Testes de Sensibilidade Microbiana , Saúde Pública , Fatores de Risco , População Rural , Saneamento , Solo/química , beta-Lactamases/genética
4.
Environ Health Perspect ; 130(5): 57011, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35617001

RESUMO

BACKGROUND: The effective reproductive number, Re, is a critical indicator to monitor disease dynamics, inform regional and national policies, and estimate the effectiveness of interventions. It describes the average number of new infections caused by a single infectious person through time. To date, Re estimates are based on clinical data such as observed cases, hospitalizations, and/or deaths. These estimates are temporarily biased when clinical testing or reporting strategies change. OBJECTIVES: We show that the dynamics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in wastewater can be used to estimate Re in near real time, independent of clinical data and without the associated biases. METHODS: We collected longitudinal measurements of SARS-CoV-2 RNA in wastewater in Zurich, Switzerland, and San Jose, California, USA. We combined this data with information on the temporal dynamics of shedding (the shedding load distribution) to estimate a time series proportional to the daily COVID-19 infection incidence. We estimated a wastewater-based Re from this incidence. RESULTS: The method to estimate Re from wastewater worked robustly on data from two different countries and two wastewater matrices. The resulting estimates were as similar to the Re estimates from case report data as Re estimates based on observed cases, hospitalizations, and deaths are among each other. We further provide details on the effect of sampling frequency and the shedding load distribution on the ability to infer Re. DISCUSSION: To our knowledge, this is the first time Re has been estimated from wastewater. This method provides a low-cost, rapid, and independent way to inform SARS-CoV-2 monitoring during the ongoing pandemic and is applicable to future wastewater-based epidemiology targeting other pathogens. https://doi.org/10.1289/EHP10050.


Assuntos
COVID-19 , SARS-CoV-2 , Número Básico de Reprodução , COVID-19/epidemiologia , Humanos , RNA Viral , Águas Residuárias
5.
Nat Microbiol ; 7(5): 620-629, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35422497

RESUMO

Healthy development of the gut microbiome provides long-term health benefits. Children raised in countries with high infectious disease burdens are frequently exposed to diarrhoeal pathogens and antibiotics, which perturb gut microbiome assembly. A recent cluster-randomized trial leveraging >4,000 child observations in Dhaka, Bangladesh, found that automated water chlorination of shared taps effectively reduced child diarrhoea and antibiotic use. In this substudy, we leveraged stool samples collected from 130 children 1 year after chlorine doser installation to examine differences between treatment and control children's gut microbiota. Water chlorination was associated with increased abundance of several bacterial genera previously linked to improved gut health; however, we observed no effects on the overall richness or diversity of taxa. Several clinically relevant antibiotic resistance genes were relatively more abundant in the gut microbiome of treatment children, possibly due to increases in Enterobacteriaceae. While further studies on the long-term health impacts of drinking chlorinated water would be valuable, we conclude that access to chlorinated water did not substantially impact child gut microbiome development in this setting, supporting the use of chlorination to increase global access to safe drinking water.


Assuntos
Água Potável , Microbioma Gastrointestinal , Purificação da Água , Bangladesh , Criança , Diarreia , Halogenação , Humanos
6.
Nat Microbiol ; 7(8): 1151-1160, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35851854

RESUMO

The continuing emergence of SARS-CoV-2 variants of concern and variants of interest emphasizes the need for early detection and epidemiological surveillance of novel variants. We used genomic sequencing of 122 wastewater samples from three locations in Switzerland to monitor the local spread of B.1.1.7 (Alpha), B.1.351 (Beta) and P.1 (Gamma) variants of SARS-CoV-2 at a population level. We devised a bioinformatics method named COJAC (Co-Occurrence adJusted Analysis and Calling) that uses read pairs carrying multiple variant-specific signature mutations as a robust indicator of low-frequency variants. Application of COJAC revealed that a local outbreak of the Alpha variant in two Swiss cities was observable in wastewater up to 13 d before being first reported in clinical samples. We further confirmed the ability of COJAC to detect emerging variants early for the Delta variant by analysing an additional 1,339 wastewater samples. While sequencing data of single wastewater samples provide limited precision for the quantification of relative prevalence of a variant, we show that replicate and close-meshed longitudinal sequencing allow for robust estimation not only of the local prevalence but also of the transmission fitness advantage of any variant. We conclude that genomic sequencing and our computational analysis can provide population-level estimates of prevalence and fitness of emerging variants from wastewater samples earlier and on the basis of substantially fewer samples than from clinical samples. Our framework is being routinely used in large national projects in Switzerland and the UK.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , COVID-19/epidemiologia , Genômica , Humanos , SARS-CoV-2/genética , Águas Residuárias
7.
ISME J ; 15(8): 2415-2426, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33664433

RESUMO

Surface-attached microbial communities constitute a vast amount of life on our planet. They contribute to all major biogeochemical cycles, provide essential services to our society and environment, and have important effects on human health and disease. They typically consist of different interacting genotypes that arrange themselves non-randomly across space (referred to hereafter as spatial self-organization). While spatial self-organization is important for the functioning, ecology, and evolution of these communities, the underlying determinants of spatial self-organization remain unclear. Here, we performed a combination of experiments, statistical modeling, and mathematical simulations with a synthetic cross-feeding microbial community consisting of two isogenic strains. We found that two different patterns of spatial self-organization emerged at the same length and time scales, thus demonstrating pattern diversification. This pattern diversification was not caused by initial environmental heterogeneity or by genetic heterogeneity within populations. Instead, it was caused by nongenetic heterogeneity within populations, and we provide evidence that the source of this nongenetic heterogeneity is local differences in the initial spatial positionings of individuals. We further demonstrate that the different patterns exhibit different community-level properties; namely, they have different expansion speeds. Together, our results demonstrate that pattern diversification can emerge in the absence of initial environmental heterogeneity or genetic heterogeneity within populations and can affect community-level properties, thus providing novel insights into the causes and consequences of microbial spatial self-organization.


Assuntos
Microbiota , Ecologia , Humanos , Modelos Estatísticos
8.
Commun Biol ; 3(1): 264, 2020 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-32451431

RESUMO

Increasing incidence of antibiotic resistance in clinical and environmental settings calls for increased scalability in their surveillance. Current screening technologies are limited by the number of samples and genes that can easily be screened. We demonstrate here digital multiplex ligation assay (dMLA) as a low-cost targeted genomic detection workflow capable of highly-parallel screening of bacterial isolates for multiple target gene regions simultaneously. Here, dMLA is used for simultaneous detection of 1187 ß-lactamase-encoding genes, including extended spectrum ß-lactamase (ESBL) genes, in 74 bacterial isolates. We demonstrate dMLA as a light-weight and cost-efficient workflow which provides a highly scalable tool for antimicrobial resistance surveillance and is also adaptable to genetic screening applications beyond antibiotic resistance.


Assuntos
Bactérias/genética , Proteínas de Bactérias/genética , beta-Lactamases/genética , Bactérias/enzimologia , Proteínas de Bactérias/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , beta-Lactamases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA