Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Entropy (Basel) ; 25(5)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37238543

RESUMO

In this paper, we construct the metric tensor and volume for the manifold of purifications associated with an arbitrary reduced density operator ρS. We also define a quantum coarse-graining (CG) to study the volume where macrostates are the manifolds of purifications, which we call surfaces of ignorance (SOI), and microstates are the purifications of ρS. In this context, the volume functions as a multiplicity of the macrostates that quantifies the amount of information missing from ρS. Using examples where the SOI are generated using representations of SU(2), SO(3), and SO(N), we show two features of the CG: (1) A system beginning in an atypical macrostate of smaller volume evolves to macrostates of greater volume until it reaches the equilibrium macrostate in a process in which the system and environment become strictly more entangled, and (2) the equilibrium macrostate takes up the vast majority of the coarse-grained space especially as the dimension of the total system becomes large. Here, the equilibrium macrostate corresponds to a maximum entanglement between the system and the environment. To demonstrate feature (1) for the examples considered, we show that the volume behaves like the von Neumann entropy in that it is zero for pure states, maximal for maximally mixed states, and is a concave function with respect to the purity of ρS. These two features are essential to typicality arguments regarding thermalization and Boltzmann's original CG.

2.
Entropy (Basel) ; 23(6)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34071931

RESUMO

Attaining reliable gradient profiles is of utmost relevance for many physical systems. In many situations, the estimation of the gradient is inaccurate due to noise. It is common practice to first estimate the underlying system and then compute the gradient profile by taking the subsequent analytic derivative of the estimated system. The underlying system is often estimated by fitting or smoothing the data using other techniques. Taking the subsequent analytic derivative of an estimated function can be ill-posed. This becomes worse as the noise in the system increases. As a result, the uncertainty generated in the gradient estimate increases. In this paper, a theoretical framework for a method to estimate the gradient profile of discrete noisy data is presented. The method was developed within a Bayesian framework. Comprehensive numerical experiments were conducted on synthetic data at different levels of noise. The accuracy of the proposed method was quantified. Our findings suggest that the proposed gradient profile estimation method outperforms the state-of-the-art methods.

3.
Chaos ; 28(3): 032101, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29604632

RESUMO

Research on the use of information geometry (IG) in modern physics has witnessed significant advances recently. In this review article, we report on the utilization of IG methods to define measures of complexity in both classical and, whenever available, quantum physical settings. A paradigmatic example of a dramatic change in complexity is given by phase transitions (PTs). Hence, we review both global and local aspects of PTs described in terms of the scalar curvature of the parameter manifold and the components of the metric tensor, respectively. We also report on the behavior of geodesic paths on the parameter manifold used to gain insight into the dynamics of PTs. Going further, we survey measures of complexity arising in the geometric framework. In particular, we quantify complexity of networks in terms of the Riemannian volume of the parameter space of a statistical manifold associated with a given network. We are also concerned with complexity measures that account for the interactions of a given number of parts of a system that cannot be described in terms of a smaller number of parts of the system. Finally, we investigate complexity measures of entropic motion on curved statistical manifolds that arise from a probabilistic description of physical systems in the presence of limited information. The Kullback-Leibler divergence, the distance to an exponential family and volumes of curved parameter manifolds, are examples of essential IG notions exploited in our discussion of complexity. We conclude by discussing strengths, limits, and possible future applications of IG methods to the physics of complexity.

4.
Chaos ; 25(4): 043106, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25933654

RESUMO

Identification of causal structures and quantification of direct information flows in complex systems is a challenging yet important task, with practical applications in many fields. Data generated by dynamical processes or large-scale systems are often symbolized, either because of the finite resolution of the measurement apparatus, or because of the need of statistical estimation. By algorithmic application of causation entropy, we investigated the effects of symbolization on important concepts such as Markov order and causal structure of the tent map. We uncovered that these quantities depend nonmonotonically and, most of all, sensitively on the choice of symbolization. Indeed, we show that Markov order and causal structure do not necessarily converge to their original analog counterparts as the resolution of the partitioning becomes finer.

5.
Phys Rev E ; 105(3-1): 034143, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35428089

RESUMO

We present an information geometric characterization of quantum driving schemes specified by su(2;C) time-dependent Hamiltonians in terms of both complexity and efficiency concepts. Specifically, starting from pure output quantum states describing the evolution of a spin-1/2 particle in an external time-dependent magnetic field, we consider the probability paths emerging from the parametrized squared probability amplitudes of quantum origin. The information manifold of such paths is equipped with a Riemannian metrization specified by the Fisher information evaluated along the parametrized squared probability amplitudes. By employing a minimum action principle, the optimum path connecting initial and final states on the manifold in finite time is the geodesic path between the two states. In particular, the total entropy production that occurs during the transfer is minimized along these optimum paths. For each optimum path that emerges from the given quantum driving scheme, we evaluate the so-called information geometric complexity (IGC) and our newly proposed measure of entropic efficiency constructed in terms of the constant entropy production rates that specify the entropy minimizing paths being compared. From our analytical estimates of complexity and efficiency, we provide a relative ranking among the driving schemes being investigated. Moreover, we determine that the efficiency and the temporal rate of change of the IGC are monotonic decreasing and increasing functions, respectively, of the constant entropic speed along these optimum paths. Then, after discussing the connection between thermodynamic length and IGC in the physical scenarios being analyzed, we briefly examine the link between IGC and entropy production rate. Finally, we conclude by commenting on the fact that an higher entropic speed in quantum transfer processes seems to necessarily go along with a lower entropic efficiency together with a higher information geometric complexity.

6.
Phys Rev E ; 101(2-1): 022110, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32168615

RESUMO

We present an information geometric analysis of entropic speeds and entropy production rates in geodesic evolution on manifolds of parametrized quantum states. These pure states emerge as outputs of suitable su(2;C) time-dependent Hamiltonian operators used to describe distinct types of analog quantum search schemes. The Riemannian metrization on the manifold is specified by the Fisher information evaluated along the parametrized squared probability amplitudes obtained from analysis of the temporal quantum mechanical evolution of a spin-1/2 particle in an external time-dependent magnetic field that specifies the su(2;C) Hamiltonian model. We employ a minimum action method to transfer a quantum system from an initial state to a final state on the manifold in a finite temporal interval. Furthermore, we demonstrate that the minimizing (optimum) path is the shortest (geodesic) path between the two states and, in particular, minimizes also the total entropy production that occurs during the transfer. Finally, by evaluating the entropic speed and the total entropy production along the optimum transfer paths in a number of physical scenarios of interest in analog quantum search problems, we show in a clear quantitative manner that to a faster transfer there corresponds necessarily a higher entropy production rate. Thus we conclude that lower entropic efficiency values appear to accompany higher entropic speed values in quantum transfer processes.

7.
Phys Rev E ; 97(4-1): 042110, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29758746

RESUMO

The relevance of the concept of Fisher information is increasing in both statistical physics and quantum computing. From a statistical mechanical standpoint, the application of Fisher information in the kinetic theory of gases is characterized by its decrease along the solutions of the Boltzmann equation for Maxwellian molecules in the two-dimensional case. From a quantum mechanical standpoint, the output state in Grover's quantum search algorithm follows a geodesic path obtained from the Fubini-Study metric on the manifold of Hilbert-space rays. Additionally, Grover's algorithm is specified by constant Fisher information. In this paper, we present an information geometric characterization of the oscillatory or monotonic behavior of statistically parametrized squared probability amplitudes originating from special functional forms of the Fisher information function: constant, exponential decay, and power-law decay. Furthermore, for each case, we compute both the computational speed and the availability loss of the corresponding physical processes by exploiting a convenient Riemannian geometrization of useful thermodynamical concepts. Finally, we briefly comment on the possibility of using the proposed methods of information geometry to help identify a suitable trade-off between speed and thermodynamic efficiency in quantum search algorithms.

8.
Phys Rev E ; 94(5-1): 052145, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27967170

RESUMO

We investigate the maximum caliber variational principle as an inference algorithm used to predict dynamical properties of complex nonequilibrium, stationary, statistical systems in the presence of incomplete information. Specifically, we maximize the path entropy over discrete time step trajectories subject to normalization, stationarity, and detailed balance constraints together with a path-dependent dynamical information constraint reflecting a given average global behavior of the complex system. A general expression for the transition probability values associated with the stationary random Markov processes describing the nonequilibrium stationary system is computed. By virtue of our analysis, we uncover that a convenient choice of the dynamical information constraint together with a perturbative asymptotic expansion with respect to its corresponding Lagrange multiplier of the general expression for the transition probability leads to a formal overlap with the well-known Glauber hyperbolic tangent rule for the transition probability for the stochastic Ising model in the limit of very high temperatures of the heat reservoir.

9.
Phys Rev E ; 93(2): 022114, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26986295

RESUMO

From the Horowitz-Esposito stochastic thermodynamical description of information flows in dynamical systems [J. M. Horowitz and M. Esposito, Phys. Rev. X 4, 031015 (2014)], it is known that while the second law of thermodynamics is satisfied by a joint system, the entropic balance for the subsystems is adjusted by a term related to the mutual information exchange rate between the two subsystems. In this article, we present a quantitative discussion of the conceptual link between the Horowitz-Esposito analysis and the Liang-Kleeman work on information transfer between dynamical system components [X. S. Liang and R. Kleeman, Phys. Rev. Lett. 95, 244101 (2005)]. In particular, the entropic balance arguments employed in the two approaches are compared. Notwithstanding all differences between the two formalisms, our work strengthens the Liang-Kleeman heuristic balance reasoning by showing its formal analogy with the recent Horowitz-Esposito thermodynamic balance arguments.


Assuntos
Entropia , Modelos Teóricos , Probabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA