Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurosci ; 27(38): 10128-42, 2007 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-17881519

RESUMO

We generated a mouse line harboring an autosomal-dominant nocturnal frontal lobe epilepsy (ADNFLE) mutation: the alpha4 nicotinic receptor S248F knock-in strain. In this mouse, modest nicotine doses (1-2 mg/kg) elicit a novel behavior termed the dystonic arousal complex (DAC). The DAC includes stereotypical head movements, body jerking, and forelimb dystonia; these behaviors resemble some core features of ADNFLE. A marked Straub tail is an additional component of the DAC. Similar to attacks in ADNFLE, the DAC can be partially suppressed by the sodium channel blocker carbamazepine or by pre-exposure to a very low dose of nicotine (0.1 mg/kg). The DAC is centrally mediated, genetically highly penetrant, and, surprisingly, not associated with overt ictal electrical activity as assessed by (1) epidural or frontal lobe depth-electrode electroencephalography or (2) hippocampal c-fos-regulated gene expression. Heterozygous knock-in mice are partially protected from nicotine-induced seizures. The noncompetitive antagonist mecamylamine does not suppress the DAC, although it suppresses high-dose nicotine-induced wild-type-like seizures. Experiments on agonist-induced 86Rb+ and neurotransmitter efflux from synaptosomes and on alpha4S248Fbeta2 receptors expressed in oocytes confirm that the S248F mutation confers resistance to mecamylamine blockade. Genetic background, gender, and mutant gene expression levels modulate expression of the DAC phenotype in mice. The S248F mouse thus appears to provide a model for the paroxysmal dystonic element of ADNFLE semiology. Our model complements what is seen in other ADNFLE animal models. Together, these mice cover the spectrum of behavioral and electrographic events seen in the human condition.


Assuntos
Nível de Alerta/genética , Modelos Animais de Doenças , Distúrbios Distônicos/genética , Epilepsia do Lobo Frontal/genética , Mutação , Nicotina/toxicidade , Animais , Nível de Alerta/efeitos dos fármacos , Distúrbios Distônicos/induzido quimicamente , Epilepsia do Lobo Frontal/induzido quimicamente , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes Neurológicos , Camundongos Transgênicos , Ratos , Especificidade da Espécie , Xenopus
2.
Neuropsychopharmacology ; 36(7): 1505-17, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21430644

RESUMO

Here we utilize a mouse line with a targeted deletion of the α4 subunit (α4-/- mice), to investigate the role of α4* nAChRs in reinforcing and locomotor effects of nicotine. Within a conditioned place preference paradigm, both α4-/- mice and wild-type (WT) littermates showed a similar place preference to nicotine (0.5 mg/kg i.p.) conditioning. When assessed for operant intravenous self-administration of nicotine (0.05 mg/kg/infusion), α4-/- mice did not differ from their WT littermates in self-administration behavior. To further examine a modulatory role for α4* nAChRs in the reinforcing effects of nicotine, a transgenic mouse with a point mutation of the α4 subunit (α4-S248F) that renders increased sensitivity to low dose nicotine, was assessed for nicotine self-administration over a range of doses. At higher doses examined (0.05 and 0.07 mg/kg/infusion) there was no difference in intravenous nicotine self-administration; however, when mice were offered a lower dose of nicotine (0.03 mg/kg/infusion), α4-S248F mice showed greater nicotine intake than controls. Acute administration of 0.5 mg/kg nicotine caused significant locomotor depression in WT mice but α4-/- mice instead showed significant hyperactivity. Following chronic, intermittent administration of this dose of nicotine only WT mice displayed significant tolerance. Analogous experiments utilizing administration of the nicotinic antagonist mecamylamine in WT mice confirmed a dissociation between the putative nicotinic receptor subtypes required for mediating psychomotor and reinforcing effects of nicotine. These data demonstrate a necessary role for α4* nAChRs in the locomotor depressant effect of nicotine but not the reinforcing effects that support ongoing self-administration of nicotine.


Assuntos
Locomoção/efeitos dos fármacos , Locomoção/genética , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Receptores Nicotínicos/deficiência , Reforço Psicológico , Animais , Condicionamento Operante/efeitos dos fármacos , Sinais (Psicologia) , Relação Dose-Resposta a Droga , Esquema de Medicação , Antagonistas de Aminoácidos Excitatórios/farmacologia , Ketamina/farmacologia , Mecamilamina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Antagonistas Nicotínicos/farmacologia , Autoadministração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA