RESUMO
The presence of DNA in the cytoplasm is normally a sign of microbial infections and is quickly detected by cyclic GMP-AMP synthase (cGAS) to elicit anti-infection immune responses. However, chronic activation of cGAS by self-DNA leads to severe autoimmune diseases for which no effective treatment is available yet. Here we report that acetylation inhibits cGAS activation and that the enforced acetylation of cGAS by aspirin robustly suppresses self-DNA-induced autoimmunity. We find that cGAS acetylation on either Lys384, Lys394, or Lys414 contributes to keeping cGAS inactive. cGAS is deacetylated in response to DNA challenges. Importantly, we show that aspirin can directly acetylate cGAS and efficiently inhibit cGAS-mediated immune responses. Finally, we demonstrate that aspirin can effectively suppress self-DNA-induced autoimmunity in Aicardi-Goutières syndrome (AGS) patient cells and in an AGS mouse model. Thus, our study reveals that acetylation contributes to cGAS activity regulation and provides a potential therapy for treating DNA-mediated autoimmune diseases.
Assuntos
DNA/imunologia , Nucleotidiltransferases/metabolismo , Tolerância a Antígenos Próprios/imunologia , Acetilação , Sequência de Aminoácidos , Animais , Aspirina/farmacologia , Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Doenças Autoimunes/metabolismo , Doenças Autoimunes do Sistema Nervoso/genética , Doenças Autoimunes do Sistema Nervoso/imunologia , Doenças Autoimunes do Sistema Nervoso/metabolismo , Autoimunidade , Linhagem Celular , DNA/genética , DNA/metabolismo , Modelos Animais de Doenças , Exodesoxirribonucleases/metabolismo , Células HEK293 , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Mutação , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/imunologia , Malformações do Sistema Nervoso/metabolismo , Nucleotidiltransferases/antagonistas & inibidores , Nucleotidiltransferases/química , Nucleotidiltransferases/genética , Células THP-1RESUMO
Cyclic GMP-AMP synthase (cGAS) is a key sensor responsible for cytosolic DNA detection. Here we report that GTPase-activating protein SH3 domain-binding protein 1 (G3BP1) is critical for DNA sensing and efficient activation of cGAS. G3BP1 enhanced DNA binding of cGAS by promoting the formation of large cGAS complexes. G3BP1 deficiency led to inefficient DNA binding by cGAS and inhibited cGAS-dependent interferon (IFN) production. The G3BP1 inhibitor epigallocatechin gallate (EGCG) disrupted existing G3BP1-cGAS complexes and inhibited DNA-triggered cGAS activation, thereby blocking DNA-induced IFN production both in vivo and in vitro. EGCG administration blunted self DNA-induced autoinflammatory responses in an Aicardi-Goutières syndrome (AGS) mouse model and reduced IFN-stimulated gene expression in cells from a patient with AGS. Thus, our study reveals that G3BP1 physically interacts with and primes cGAS for efficient activation. Furthermore, EGCG-mediated inhibition of G3BP1 provides a potential treatment for cGAS-related autoimmune diseases.
Assuntos
Doenças Autoimunes do Sistema Nervoso/metabolismo , DNA Helicases/metabolismo , Complexos Multiproteicos/metabolismo , Malformações do Sistema Nervoso/metabolismo , Nucleotidiltransferases/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Animais , Autoantígenos/imunologia , Autoantígenos/metabolismo , Doenças Autoimunes do Sistema Nervoso/tratamento farmacológico , Doenças Autoimunes do Sistema Nervoso/genética , Catequina/análogos & derivados , Catequina/uso terapêutico , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Citosol/imunologia , Citosol/metabolismo , DNA/imunologia , DNA/metabolismo , DNA Helicases/antagonistas & inibidores , DNA Helicases/genética , Modelos Animais de Doenças , Exodesoxirribonucleases/genética , Células HEK293 , Células HeLa , Humanos , Interferons/metabolismo , Camundongos , Camundongos Knockout , Malformações do Sistema Nervoso/tratamento farmacológico , Malformações do Sistema Nervoso/genética , Fármacos Neuroprotetores/uso terapêutico , Fosfoproteínas/genética , Proteínas de Ligação a Poli-ADP-Ribose/antagonistas & inibidores , Proteínas de Ligação a Poli-ADP-Ribose/genética , Ligação Proteica , RNA Helicases/antagonistas & inibidores , RNA Helicases/genética , Proteínas com Motivo de Reconhecimento de RNA/antagonistas & inibidores , Proteínas com Motivo de Reconhecimento de RNA/genéticaRESUMO
BACKGROUND: Although network analysis studies of psychiatric syndromes have increased in recent years, most have emphasized centrality symptoms and robust edges. Broadening the focus to include bridge symptoms within a systematic review could help to elucidate symptoms having the strongest links in network models of psychiatric syndromes. We conducted this systematic review and statistical evaluation of network analyses on depressive and anxiety symptoms to identify the most central symptoms and bridge symptoms, as well as the most robust edge indices of networks. METHODS: A systematic literature search was performed in PubMed, PsycINFO, Web of Science, and EMBASE databases from their inception to May 25, 2022. To determine the most influential symptoms and connections, we analyzed centrality and bridge centrality rankings and aggregated the most robust symptom connections into a summary network. After determining the most central symptoms and bridge symptoms across network models, heterogeneity across studies was examined using linear logistic regression. RESULTS: Thirty-three studies with 78,721 participants were included in this systematic review. Seventeen studies with 23 cross-sectional networks based on the Patient Health Questionnaire (PHQ) and Generalized Anxiety Disorder (GAD-7) assessments of clinical and community samples were examined using centrality scores. Twelve cross-sectional networks based on the PHQ and GAD-7 assessments were examined using bridge centrality scores. We found substantial variability between study samples and network features. 'Sad mood', 'Uncontrollable worry', and 'Worrying too much' were the most central symptoms, while 'Sad mood', 'Restlessness', and 'Motor disturbance' were the most frequent bridge centrality symptoms. In addition, the connection between 'Sleep' and 'Fatigue' was the most frequent edge for the depressive and anxiety symptoms network model. CONCLUSION: Central symptoms, bridge symptoms and robust edges identified in this systematic review can be viewed as potential intervention targets. We also identified gaps in the literature and future directions for network analysis of comorbid depression and anxiety.
Assuntos
Ansiedade , Depressão , Feminino , Humanos , Masculino , Ansiedade/complicações , Ansiedade/terapia , Transtornos de Ansiedade , Estudos Transversais , Depressão/complicações , Depressão/terapiaRESUMO
Esophageal squamous cell carcinoma (ESCC) is an aggressive malignant disease with a poor prognosis. We previously found that p62 presented a marked nuclear-cytoplasmic translocation in ESCC cells as compared that in normal esophageal epithelial cells, but its effects on ESCC cells remain unclear. This study aims to clarify the impacts of different cellular localization of p62 on the function of ESCC cells and the underlying molecular mechanisms. We here demonstrated that cytoplasmic p62 enhances the migration and invasion abilities of esophageal cancer cells, whereas nuclear p62 has no effect. We further explored the interaction protein of p62 by using GST pull-down experiment and identified EPLIN as a potential protein interacting with p62. In addition, reducing EPLIN expression significantly inhibited the migration and invasion of ESCC cells, which were rescued when EPLIN expression was restored after the p62 knockdown. At a molecular level, p62 in cytoplasm positively regulated the expression of EPLIN via enhancing its protein stability. Data from the TCGA and GEO database displayed a significant up-regulation of EPLIN mRNA expression in ESCC tissues compared with corresponding paired esophageal epithelial samples. Our findings present evidence that the nuclear-cytoplasmic translocation of p62 protein contributes to an aggressive malignancy phenotype, providing candidate molecular biomarkers and potential molecular targets for the diagnosis and treatment of ESCC.
Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Citoplasma/metabolismo , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/patologia , Regulação Neoplásica da Expressão Gênica/genética , Invasividade Neoplásica/genética , Proteína Sequestossoma-1/genética , Proteína Sequestossoma-1/metabolismoRESUMO
Many infections and stress signals can rapidly activate the NLRP3 inflammasome to elicit robust inflammatory responses. This activation requires a priming step, which is thought to be mainly for upregulating NLRP3 transcription. However, recent studies report that the NLRP3 inflammasome can be activated independently of transcription, suggesting that the priming process has unknown essential regulatory steps. Here, we report that JNK1-mediated NLRP3 phosphorylation at S194 is a critical priming event and is essential for NLRP3 inflammasome activation. We show that NLRP3 inflammasome activation is disrupted in NLRP3-S194A knockin mice. JNK1-mediated NLRP3 S194 phosphorylation is critical for NLRP3 deubiquitination and facilitates its self-association and the subsequent inflammasome assembly. Importantly, we demonstrate that blocking S194 phosphorylation prevents NLRP3 inflammasome activation in cryopyrin-associated periodic syndromes (CAPS). Thus, our study reveals a key priming molecular event that is a prerequisite for NLRP3 inflammasome activation. Inhibiting NLRP3 phosphorylation could be an effective treatment for NLRP3-related diseases.
Assuntos
Inflamassomos/genética , Macrófagos/imunologia , Proteína Quinase 8 Ativada por Mitógeno/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Choque Séptico/genética , Sequência de Aminoácidos , Animais , Enzimas Desubiquitinantes/genética , Enzimas Desubiquitinantes/imunologia , Escherichia coli/química , Feminino , Regulação da Expressão Gênica , Células HEK293 , Humanos , Inflamassomos/imunologia , Lipopolissacarídeos/farmacologia , Macrófagos/patologia , Masculino , Camundongos , Camundongos Transgênicos , Proteína Quinase 8 Ativada por Mitógeno/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/deficiência , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Fosforilação , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Choque Séptico/induzido quimicamente , Choque Séptico/mortalidade , Choque Séptico/patologia , Transdução de Sinais , Análise de SobrevidaRESUMO
General anesthesia shares many similarities with natural sleep in behavior and electroencephalogram (EEG) patterns. The latest evidence suggests that general anesthesia and sleep-wake behavior may share overlapping neural substrates. The GABAergic neurons in the basal forebrain (BF) have recently been demonstrated to play a key role in controlling wakefulness. It was hypothesized that BF GABAergic neurons may participate in the regulation of general anesthesia. Here, using in vivo fiber photometry, we found that the activity of BF GABAergic neurons was generally inhibited during isoflurane anesthesia, having obviously decreased during the induction of anesthesia and being gradually restored during the emergence from anesthesia, in Vgat-Cre mice of both sexes. Activation of BF GABAergic neurons with chemogenetic and optogenetic approaches decreased sensitivity to isoflurane, delayed induction, and accelerated emergence from isoflurane anesthesia. Optogenetic activation of BF GABAergic neurons decreased EEG δ power and the burst suppression ratio (BSR) during 0.8% and 1.4% isoflurane anesthesia, respectively. Similar to the effects of activating BF GABAergic cell bodies, photostimulation of BF GABAergic terminals in the thalamic reticular nucleus (TRN) also strongly promoted cortical activation and behavioral emergence from isoflurane anesthesia. Collectively, these results showed that the GABAergic BF is a key neural substrate for general anesthesia regulation that facilitates behavioral and cortical emergence from general anesthesia via the GABAergic BF-TRN pathway. Our findings may provide a new target for attenuating the depth of anesthesia and accelerating emergence from general anesthesia.SIGNIFICANCE STATEMENT The basal forebrain (BF) is a key brain region controlling sleep-wake behavior. Activation of GABAergic neurons in the BF potently promotes behavioral arousal and cortical activity. Recently, many sleep-wake-related brain structures have been reported to participate in the regulation of general anesthesia. However, it is still unclear what role BF GABAergic neurons play in general anesthesia. In this study, we aim to reveal the role of BF GABAergic neurons in behavioral and cortical emergence from isoflurane anesthesia and elucidate the underlying neural pathways. Understanding the specific role of BF GABAergic neurons in isoflurane anesthesia would improve our understanding of the mechanisms of general anesthesia and may provide a new strategy for accelerating emergence from general anesthesia.
Assuntos
Prosencéfalo Basal , Isoflurano , Masculino , Feminino , Camundongos , Animais , Isoflurano/farmacologia , Prosencéfalo Basal/fisiologia , Neurônios GABAérgicos/fisiologia , Sono/fisiologia , Eletroencefalografia , Anestesia GeralRESUMO
Human genetic evidence suggests a protective role of loss-of-function variants in 17-beta hydroxysteroid dehydrogenase 13 (HSD17B13) for liver fibrotic diseases. Although there is limited preclinical experimental data on Hsd17b13 antisense oligonucleotide (ASO) or siRNA in a fibrosis model, several ASO and siRNA approaches are being tested clinically as potential therapies for nonalcoholic steatohepatitis (NASH). The aim of this study was to assess the therapeutic potential of Hsd17b13 ASO in a preclinical advanced NASH-like hepatic fibrosis in vivo model. In vitro testing on primary hepatocytes demonstrated that Hsd17b13 ASO exhibited strong efficacy and specificity for knockdown of the Hsd17b13 gene. In choline-deficient, L-amino acid-defined, HFD (CDAHFD)-induced steatotic and fibrotic mice, therapeutic administration of Hsd17b13 ASO resulted in a significant and dose-dependent reduction of hepatic Hsd17b13 gene expression. The CDAHFD group exhibited considerably elevated liver enzyme levels, hepatic steatosis score, hepatic fibrosis, and increased fibrotic and inflammatory gene expression, indicating an advanced NASH-like hepatic fibrosis phenotype. Although Hsd17b13 ASO therapy significantly affected hepatic steatosis, it had no effect on hepatic fibrosis. Our findings demonstrate, for the first time, that Hsd17b13 ASO effectively suppressed Hsd17b13 gene expression both in vitro and in vivo, and had a modulatory effect on hepatic steatosis in mice, but did not affect fibrosis in the CDAHFD mouse model of NASH.
Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Modelos Animais de Doenças , Fígado/metabolismo , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/genética , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/uso terapêutico , RNA Interferente Pequeno/metabolismoRESUMO
BACKGROUND: GPR65 (G protein-coupled receptor 65) can sense extracellular acidic environment to regulate pathophysiological processes. Pretreatment with the GPR65 agonist BTB09089 has been proven to produce neuroprotection in acute ischemic stroke. However, whether delayed BTB09089 treatment and neuronal GPR65 activation promote neurorestoration remains unknown. METHODS: Ischemic stroke was induced in wild-type (WT) or GPR65 knockout (GPR65-/-) mice by photothrombotic ischemia. Male mice were injected intraperitoneally with BTB09089 every other day at days 3, 7, or 14 poststroke. AAV-Syn-GPR65 (adenoassociated virus-synapsin-GPR65) was utilized to overexpress GPR65 in the peri-infarct cortical neurons of GPR65-/- and WT mice. Motor function was monitored by grid-walk and cylinder tests. The neurorestorative effects of BTB09089 were observed by immunohistochemistry, Golgi-Cox staining, and Western blotting. RESULTS: BTB09089 significantly promoted motor outcomes in WT but not in GPR65-/- mice, even when BTB09089 was delayed for 3 to 7 days. BTB09089 inhibited the activation of microglia and glial scar progression in WT but not in GPR65-/- mice. Meanwhile, BTB09089 reduced the decrease in neuronal density in WT mice, but this benefit was abolished in GPR65-/- mice and reemerged by overexpressing GPR65 in peri-infarct cortical neurons. Furthermore, BTB09089 increased the GAP43 (growth-associated protein-43) and synaptophysin puncta density, dendritic spine density, dendritic branch length, and dendritic complexity by overexpressing GPR65 in the peri-infarct cortical neurons of GPR65-/- mice, which was accompanied by increased levels of p-CREB (phosphorylated cAMP-responsive element-binding protein). In addition, the therapeutic window of BTB09089 was extended to day 14 by overexpressing GPR65 in the peri-infarct cortical neurons of WT mice. CONCLUSIONS: Our findings indicated that delayed BTB09089 treatment improved neurological functional recovery and brain tissue repair poststroke through activating neuronal GRP65. GPR65 overexpression may be a potential strategy to expand the therapeutic time window of GPR65 agonists for neurorehabilitation after ischemic stroke.
Assuntos
AVC Isquêmico , Camundongos Knockout , Neurônios , Receptores Acoplados a Proteínas G , Animais , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/agonistas , Camundongos , AVC Isquêmico/metabolismo , Masculino , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Reabilitação do Acidente Vascular Cerebral , Fármacos Neuroprotetores/farmacologia , Camundongos Endogâmicos C57BLRESUMO
BACKGROUND: Saliva plays a crucial role in shaping the feeding behavior of insects, involving processes such as food digestion and the regulation of interactions between insects and their hosts. Cyrtorhinus lividipennis serves as a predominant natural enemy of rice pests, while Apolygus lucorum, exhibiting phytozoophagous feeding behavior, is a destructive agricultural pest. In this study, a comparative transcriptome analysis, incorporating the published genomes of C.lividipennis and A.lucorum, was conducted to reveal the role of salivary secretion in host adaptation. RESULTS: In contrast to A.lucorum, C.lividipennis is a zoophytophagous insect. A de novo genome analysis of C.lividipennis yielded 19,706 unigenes, including 16,217 annotated ones. On the other hand, A.lucorum had altogether 20,111 annotated genes, as obtained from the published official gene set (20,353 unigenes). Functional analysis of the top 1,000 salivary gland (SG)-abundant genes in both insects revealed that the SG was a dynamically active tissue engaged in protein synthesis and secretion. Predictions of other tissues and signal peptides were compared. As a result, 94 and 157 salivary proteins were identified in C.lividipennis and A.lucorum, respectively, and were categorized into 68 and 81 orthogroups. Among them, 26 orthogroups were shared, potentially playing common roles in digestion and detoxification, including several venom serine proteases. Furthermore, 42 and 55 orthogroups were exclusive in C.lividipennis and A.lucorum, respectively, which were exemplified by a hyaluronidase in C.lividipennis that was associated with predation, while polygalacturonases in A.lucorum were involved in mesophyll-feeding patterns. CONCLUSIONS: Findings in this study provide a comprehensive insight into saliva secretions in C.lividipennis and A.lucorum via a transcriptome approach, reflecting the intricate connections between saliva secretions and feeding behaviors. It is found that conserved salivary secretions are involved in shaping the overlapping feeding patterns, while a plethora of unique salivary secretions may drive the evolution of specific feeding behaviors crucial for their survival. These results enhance our understanding of the feeding mechanisms in different insects from the perspective of saliva and contribute to future environmentally friendly pest control by utilizing predatory insects.
Assuntos
Heterópteros , Transcriptoma , Animais , Heterópteros/genética , Glândulas Salivares , Perfilação da Expressão Gênica/métodos , SalivaRESUMO
Uveal melanoma (UM) patients face a significant risk of distant metastasis, closely tied to a poor prognosis. Despite this, there is a dearth of research utilizing big data to predict UM distant metastasis. This study leveraged machine learning methods on the Surveillance, Epidemiology, and End Results (SEER) database to forecast the risk probability of distant metastasis. Therefore, the information on UM patients from the SEER database (2000-2020) was split into a 7:3 ratio training set and an internal test set based on distant metastasis presence. Univariate and multivariate logistic regression analyses assessed distant metastasis risk factors. Six machine learning methods constructed a predictive model post-feature variable selection. The model evaluation identified the multilayer perceptron (MLP) as optimal. Shapley additive explanations (SHAP) interpreted the chosen model. A web-based calculator personalized risk probabilities for UM patients. The results show that nine feature variables contributed to the machine learning model. The MLP model demonstrated superior predictive accuracy (Precision = 0.788; ROC AUC = 0.876; PR AUC = 0.788). Grade recode, age, primary site, time from diagnosis to treatment initiation, and total number of malignant tumors were identified as distant metastasis risk factors. Diagnostic method, laterality, rural-urban continuum code, and radiation recode emerged as protective factors. The developed web calculator utilizes the MLP model for personalized risk assessments. In conclusion, the MLP machine learning model emerges as the optimal tool for predicting distant metastasis in UM patients. This model facilitates personalized risk assessments, empowering early and tailored treatment strategies.
Assuntos
Aprendizado de Máquina , Melanoma , Programa de SEER , Neoplasias Uveais , Humanos , Neoplasias Uveais/patologia , Melanoma/patologia , Feminino , Masculino , Estudos Retrospectivos , Pessoa de Meia-Idade , Fatores de Risco , Idoso , Prognóstico , Metástase Neoplásica , Adulto , Medição de Risco/métodosRESUMO
BACKGROUND & AIMS: The aim of this study was to investigate the persistence of Lugol-unstained lesions (LULs) in the esophagus detected by chromoendoscopy and explore their association with progression to malignancy. METHODS: We enrolled 647 participants from a population-based screening trial who had biopsied LULs at the baseline chromoendoscopy and underwent a chromoendoscopy re-examination after a median of 4.39 years. Cases of persistent LUL were defined as those in whom a visible LUL was observed during re-examination at the documented location (±2 cm) where a LUL was detected at baseline chromoendoscopy. Logistic regression was applied to explore risk factors for the persistence of LULs. The primary outcome was clinical-stage esophageal squamous cell carcinoma identified over 6.78 years of follow-up, and the secondary outcome was re-examination-detected severe dysplasia and above lesions. The cumulative incidence was calculated to assess the progression risk associated with the persistence of LULs. RESULTS: The proportion of participants with persistent LULs was 81.92%. Dysplasia (adjusted odds ratio [OR], 6.16; 95% confidence interval [CI], 2.70-17.80), large LULs (adjusted OR, 1.90; 95% CI, 1.18-3.15), and irregularly shaped LULs (adjusted OR, 1.63; 95% CI, 1.03-2.56) at baseline were associated with an increased risk of LUL persistence. Eleven clinical-stage esophageal squamous cell carcinoma cases and 31 severe dysplasia and above lesions detected during reexamination were identified, all of which originated from patients with persistent LULs (Pclinical-stage ESCC = .136; Pre-examination-detected SDA = .015). CONCLUSION: The persistence of LULs is associated with progression to malignancy in the esophagus, even in individuals without dysplastic lesions. Based on this, a more efficient post-screening surveillance strategy could be established.
RESUMO
BACKGROUND: Myocardial infarction (MI) dramatically changes the mechanical stress, which is intensified by the fibrotic remodeling. Integrins, especially the αV subunit, mediate mechanical signal and mechanoparacrine of transforming growth factor ß1 (TGF-ß1) in various organ fibrosis by activating CFs into myofibroblasts (MFBs). We investigated a possible role of integrin αV mediated mechanoparacrine of TGF-ß1 in MFBs activation for fibrous reparation in mice with MI. METHODS: Heart samples from MI, sham, or MI plus cilengitide (14 mg/kg, specific integrin αV inhibitor) treated mice, underwent functional and morphological assessments by echocardiography, and histochemistry on 7, 14 and 28 days post-surgery. The mechanical and ultrastructural changes of the fibrous scar were further evaluated by atomic mechanics microscope (AFM), immunofluorescence, second harmonic generation (SHG) imaging, polarized light and scanning electron microscope, respectively. Hydroxyproline assay was used for total collagen content, and western blot for protein expression profile examination. Fibroblast bioactivities, including cell shape, number, Smad2/3 signal and expression of extracellular matrix (ECM) related proteins, were further evaluated by microscopic observation and immunofluorescence in polyacrylamide (PA) hydrogel with adjustable stiffness, which was re-explored in fibroblast cultured on stiff matrix after silencing of integrin αV. The content of total and free TGF-ß1 was tested by enzyme-linked immunosorbent assay (ELISA) in both infarcted tissue and cell samples. RESULT: Increased stiffness with heterogeneity synchronized with integrin αV and alpha smooth muscle actin (α-SMA) positive MFBs accumulation in those less mature fibrous areas. Cilengitide abruptly reduced collagen content and disrupted collagen alignment, which also decreased TGF-ß1 bioavailability, Smad2/3 phosphorylation, and α-SMA expression in the fibrous area. Accordingly, fibroblast on stiff but not soft matrix exhibited obvious MFB phenotype, as evidenced by enlarged cell, hyperproliferation, well-developed α-SMA fibers, and elevated ECM related proteins, while silencing of integrin αV almost abolished this switch via attenuating paracrine of TGF-ß1 and nuclear translocation of Smad2/3. CONCLUSION: This study illustrated that increased tissue stiffness activates CFs into MFBs by integrin αV mediated mechanoparacrine of TGF-ß1, especially in immature scar area, which ultimately promotes fibrous scar maturation.
Assuntos
Infarto do Miocárdio , Miofibroblastos , Animais , Camundongos , Actinas/metabolismo , Cicatriz/metabolismo , Colágeno/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Fibrose , Integrina alfaV/metabolismo , Infarto do Miocárdio/patologia , Miofibroblastos/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismoRESUMO
There is a noticeable gap in the literature regarding research on halogen-substitution-regulated ferroelectric semiconductors featuring multiple phase transitions. Here, a new category of 1D perovskite ferroelectrics (DFP)2SbX5 (DFP+ = 3,3-difluoropyrrolidium, X- = I-, Br-, abbreviated as I-1 and Br-2) with twophase transitions (PTs) is reported. The first low-temperature PT is a mmmFmm2 ferroelectric PT, while the high-temperature PT is a counterintuitive inverse temperature symmetry-breaking PT. By the substitution of iodine with bromine, the Curie temperature (Tc) significantly increases from 348 K of I-1 to 374 K of Br-2. Their ferroelectricity and pyroelectricity are improved (Ps value from 1.3 to 4.0 µC cm-2, pe value from 0.2 to 0.48 µC cm-2 K-1 for I-1 and Br-2), while their optical bandgaps increased from 2.1 to 2.7 eV. A critical slowing down phenomenon is observed in the dielectric measurement of I-1 while Br-2 exhibits the ferroelastic domain. Structural and computational analyses elucidate that the order-disorder movement of cations and the distortion of the chain perovskite [SbX5]2- anions skeleton lead to PT. The semiconductor properties are determined by [SbX5]2- anions. The findings contribute to the development of ferroelectric semiconductors and materials with multiple PTs and provide materials for potential applications in the optoelectronic field.
RESUMO
MAIN CONCLUSION: The post-transcriptional gene regulatory pathway and small RNA pathway play important roles in regulating the rapid and long-term response of Rhododendron moulmainense to high-temperature stress. The Rhododendron plays an important role in maintaining ecological balance. However, it is difficult to domesticate for use in urban ecosystems due to their strict optimum growth temperature condition, and its evolution and adaptation are little known. Here, we combined transcriptome and small RNAome to reveal the rapid response and long-term adaptability regulation strategies in Rhododendron moulmainense under high-temperature stress. The post-transcriptional gene regulatory pathway plays important roles in stress response, in which the protein folding pathway is rapidly induced at 4 h after heat stress, and alternative splicing plays an important role in regulating gene expression at 7 days after heat stress. The chloroplasts oxidative damage is the main factor inhibiting photosynthesis efficiency. Through WGCNA analysis, we identified gene association patterns and potential key regulatory genes responsible for maintaining the ROS steady-state under heat stress. Finally, we found that the sRNA synthesis pathway is induced under heat stress. Combined with small RNAome, we found that more miRNAs are significantly changed under long-term heat stress. Furthermore, MYBs might play a central role in target gene interaction network of differentially expressed miRNAs in R. moulmainense under heat stress. MYBs are closely related to ABA, consistently, ABA synthesis and signaling pathways are significantly inhibited, and the change in stomatal aperture is not obvious under heat stress. Taken together, we gained valuable insights into the transplantation and long-term conservation domestication of Rhododendron, and provide genetic resources for genetic modification and molecular breeding to improve heat resistance in Rhododendron.
Assuntos
MicroRNAs , Rhododendron , Transcriptoma/genética , Rhododendron/genética , Rhododendron/metabolismo , Ecossistema , Resposta ao Choque Térmico/genética , MicroRNAs/genética , Perfilação da Expressão GênicaRESUMO
BACKGROUND: Fibrogenesis within ovarian endometrioma (endometrioma), mainly induced by transforming growth factor-ß (TGF-ß), is characterized by myofibroblast over-activation and excessive extracellular matrix (ECM) deposition, contributing to endometrioma-associated symptoms such as infertility by impairing ovarian reserve and oocyte quality. However, the precise molecular mechanisms that underpin the endometrioma- associated fibrosis progression induced by TGF-ß remain poorly understood. METHODS: The expression level of lysine acetyltransferase 14 (KAT14) was validated in endometrium biopsies from patients with endometrioma and healthy controls, and the transcription level of KAT14 was further confirmed by analyzing a published single-cell transcriptome (scRNA-seq) dataset of endometriosis. We used overexpression, knockout, and knockdown approaches in immortalized human endometrial stromal cells (HESCs) or human primary ectopic endometrial stromal cells (EcESCs) to determine the role of KAT14 in TGF-ß-induced fibrosis. Furthermore, an adeno-associated virus (AAV) carrying KAT14-shRNA was used in an endometriosis mice model to assess the role of KAT14 in vivo. RESULTS: KAT14 was upregulated in ectopic lesions from endometrioma patients and predominantly expressed in activated fibroblasts. In vitro studies showed that KAT14 overexpression significantly promoted a TGF-ß-induced profibrotic response in endometrial stromal cells, while KAT14 silencing showed adverse effects that could be rescued by KAT14 re-enhancement. In vivo, Kat14 knockdown ameliorated fibrosis in the ectopic lesions of the endometriosis mouse model. Mechanistically, we showed that KAT14 directly interacted with serum response factor (SRF) to promote the expression of α-smooth muscle actin (α-SMA) by increasing histone H4 acetylation at promoter regions; this is necessary for TGF-ß-induced ECM production and myofibroblast differentiation. In addition, the knockdown or pharmacological inhibition of SRF significantly attenuated KAT14-mediating profibrotic effects under TGF-ß treatment. Notably, the KAT14/SRF complex was abundant in endometrioma samples and positively correlated with α-SMA expression, further supporting the key role of KAT14/SRF complex in the progression of endometrioma-associated fibrogenesis. CONCLUSION: Our results shed light on KAT14 as a key effector of TGF-ß-induced ECM production and myofibroblast differentiation in EcESCs by promoting histone H4 acetylation via co-operating with SRF, representing a potential therapeutic target for endometrioma-associated fibrosis.
Assuntos
Endometriose , Fibrose , Fator de Resposta Sérica , Fator de Crescimento Transformador beta , Adulto , Animais , Feminino , Humanos , Camundongos , Endometriose/patologia , Endometriose/metabolismo , Endométrio/metabolismo , Endométrio/patologia , Histona Acetiltransferases/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Fator de Resposta Sérica/metabolismo , Células Estromais/metabolismo , Células Estromais/patologia , Fator de Crescimento Transformador beta/metabolismo , Regulação para Cima/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/metabolismoRESUMO
A fully homomorphic encryption system enables computation on encrypted data without the necessity for prior decryption. This facilitates the seamless establishment of a secure quantum channel, bridging the server and client components, and thereby providing the client with secure access to the server's substantial computational capacity for executing quantum operations. However, traditional homomorphic encryption systems lack scalability, programmability, and stability. In this Letter, we experimentally demonstrate a proof-of-concept implementation of a homomorphic encryption scheme on a compact quantum chip, verifying the feasibility of using photonic chips for quantum homomorphic encryption. Our work not only provides a solution for circuit expansion, addressing the longstanding challenge of scalability while significantly reducing the size of quantum network infrastructure, but also lays the groundwork for the development of highly sophisticated quantum fully homomorphic encryption systems.
RESUMO
RNA interactomes and their diversified functionalities have recently benefited from critical methodological advances leading to a paradigm shift from a conventional conception on the regulatory roles of RNA in pathogenesis. However, the dynamic RNA interactomes in adenoma-carcinoma sequence of human CRC remain unexplored. The coexistence of adenoma, cancer, and normal tissues in colorectal cancer (CRC) patients provides an appropriate model to address this issue. Here, we adopted an RNA in situ conformation sequencing technology for mapping RNA-RNA interactions in CRC patients. We observed large-scale paired RNA counts and identified some unique RNA complexes including multiple partners RNAs, single partner RNAs, non-overlapping single partner RNAs. We focused on the antisense RNA OIP5-AS1 and found that OIP5-AS1 could sponge different miRNA to regulate the production of metabolites including pyruvate, alanine and lactic acid. Our findings provide novel perspectives in CRC pathogenesis and suggest metabolic reprogramming of pyruvate for the early diagnosis and treatment of CRC.
Assuntos
Adenoma , Neoplasias Colorretais , MicroRNAs , Ácido Pirúvico , RNA Longo não Codificante , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Adenoma/genética , Adenoma/metabolismo , Adenoma/patologia , Ácido Pirúvico/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Regulação Neoplásica da Expressão Gênica , Reprogramação MetabólicaRESUMO
The differentiation of bone marrow stromal cells (BMSCs) into Schwann-like cells (SCLCs) has the potential to promote the structural and functional restoration of injured axons. However, the optimal induction protocol and its underlying mechanisms remain unclear. This study aimed to compare the effectiveness of different induction protocols in promoting the differentiation of rat BMSCs into SCLCs and to explore their potential mechanisms. BMSCs were induced using two distinct methods: a composite factor induction approach (Protocol-1) and a conditioned culture medium induction approach (Protocol-2). The expression of Schwann cells (SCs) marker proteins and neurotrophic factors (NTFs) in the differentiated cells was assessed. Cell proliferation and apoptosis were also measured. During induction, changes in miR-21 and Sprouty RTK signaling antagonist 2 (SPRY2) mRNA were analyzed. Following the transfection of BMSCs with miR-21 agomir or miR-21 antagomir, induction was carried out using both protocols, and the expression of SPRY2, ERK1/2, and SCs marker proteins was examined. The results revealed that NTFs expression was higher in Protocol-1, whereas SCs marker proteins expression did not significantly differ between the two groups. Compared to Protocol-1, Protocol-2 exhibited enhanced cell proliferation and fewer apoptotic and necrotic cells. Both protocols showed a negative correlation between miR-21 and SPRY2 expression throughout the induction stages. After induction, the miR-21 agomir group exhibited reduced SPRY2 expression, increased ERK1/2 expression, and significantly elevated expression of SCs marker proteins. This study demonstrates that Protocol-1 yields higher NTFs expression, whereas Protocol-2 results in stronger SCLCs proliferation. Upregulating miR-21 suppresses SPRY2 expression, activates the ERK1/2 signaling pathway, and promotes BMSC differentiation into SCLCs.
Assuntos
Diferenciação Celular , Células-Tronco Mesenquimais , MicroRNAs , Células de Schwann , Animais , Ratos , Apoptose/genética , Diferenciação Celular/genética , Proliferação de Células/genética , Células Cultivadas , Meios de Cultivo Condicionados/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , MicroRNAs/genética , Fatores de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/genética , Proteínas do Tecido Nervoso , Ratos Sprague-Dawley , Células de Schwann/metabolismo , Células de Schwann/citologiaRESUMO
Cyclic GMP-AMP synthase (cGAS) functions as a key sensor for microbial invasion and cellular damage by detecting emerging cytosolic DNA. Here, we report that GTPase-activating protein-(SH3 domain)-binding protein 1 (G3BP1) primes cGAS for its prompt activation by engaging cGAS in a primary liquid-phase condensation state. Using high-resolution microscopy, we show that in resting cells, cGAS exhibits particle-like morphological characteristics, which are markedly weakened when G3BP1 is deleted. Upon DNA challenge, the pre-condensed cGAS undergoes liquid-liquid phase separation (LLPS) more efficiently. Importantly, G3BP1 deficiency or its inhibition dramatically diminishes DNA-induced LLPS and the subsequent activation of cGAS. Interestingly, RNA, previously reported to form condensates with cGAS, does not activate cGAS. Accordingly, we find that DNA - but not RNA - treatment leads to the dissociation of G3BP1 from cGAS. Taken together, our study shows that the primary condensation state of cGAS is critical for its rapid response to DNA.