Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Arterioscler Thromb Vasc Biol ; 43(5): 755-773, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36951060

RESUMO

BACKGROUND: Atherosclerosis is a chronic inflammatory disease, in which macrophages determine the progression of atherosclerotic plaques. However, no studies have investigated how METTL3 (methyltransferase like 3) in macrophages affects atherosclerotic plaque formation in vivo. Additionally, whether Braf mRNA is modified by METTL3-dependent N6-methyladenosine (m6A) methylation remains unknown. METHODS: We analyzed single-cell sequencing data of atherosclerotic plaques in mice fed with a high fat diet for different periods. Mettl3fl/fl Lyz2cre Apoe-/- mice and littermate control Mettl3fl/fl Apoe-/- mice were generated and fed high fat diet for 14 weeks. In vitro, we stimulated peritoneal macrophages with ox-LDL (oxidized low-density lipoprotein) and tested the mRNA and protein expression levels of inflammatory factors and molecules regulating ERK (extracellular signal-regulated kinase) phosphorylation. To find METTL3 targets in macrophages, we performed m6A-methylated RNA immunoprecipitation sequencing and m6A-methylated RNA immunoprecipitation-qPCR. Further, point mutation experiments were used to explore m6A-methylated adenine. Using RNA immunoprecipitation assay, we explored m6A methylation-writing protein bound to Braf mRNA. RESULTS: In vivo, METTL3 expression in macrophages increased with the progression of atherosclerosis. Myeloid cell-specific METTL3 deletion negatively regulated atherosclerosis progression and the inflammatory response. In vitro, METTL3 knockdown or knockout in macrophages attenuated ox-LDL-mediated ERK phosphorylation rather than JNK (c-Jun N-terminal kinase) and p38 phosphorylation and reduced the level of inflammatory factors by affecting BRAF protein expression. The negative regulation of inflammation response caused by METTL3 knockout was rescued by overexpression of BRAF. In mechanism, METTL3 targeted adenine (39725126 in chromosome 6) on the Braf mRNA. Then, YTHDF1 could bind to m6A-methylated Braf mRNA and promoted its translation. CONCLUSIONS: Myeloid cell-specific Mettl3 deficiency suppressed hyperlipidemia-induced atherosclerotic plaque formation and attenuated atherosclerotic inflammation. We identified Braf mRNA as a novel target of METTL3 in the activation of the ox-LDL-induced ERK pathway and inflammatory response in macrophages. METTL3 may represent a potential target for the treatment of atherosclerosis.


Assuntos
Aterosclerose , Placa Aterosclerótica , Camundongos , Animais , Placa Aterosclerótica/metabolismo , Proteínas Proto-Oncogênicas B-raf/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Macrófagos/metabolismo , Inflamação/genética , Inflamação/prevenção & controle , Inflamação/metabolismo , Aterosclerose/genética , Aterosclerose/prevenção & controle , Aterosclerose/metabolismo , Apolipoproteínas E/metabolismo
2.
Curr Issues Mol Biol ; 45(4): 2832-2846, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37185709

RESUMO

The eggplant (Solanum melongena) is a popular vegetable around the world. However, the origin and evolution of eggplant has long been considered complex and unclear, which has become the barrier to improvements in eggplant breeding. Sequencing and comparative analyses of 13 complete chloroplast (cp) genomes of seven Solanum species were performed. Genome sizes were between 154,942 and 156,004 bp, the smallest genome was from S. torvum and the largest from S. macrocapon. Thirteen cp genomes showed highly conserved sequences and GC contents, particularly at the subgenus level. All genes in the 13 genomes were annotated. The cp genomes in this study comprised 130 genes (i.e., 80 protein-coding genes, 8 rRNA genes, and 42 tRNA genes), apart from S. sisymbriifolium, which had 129 (79 protein-coding genes, 8 rRNA genes, and 42 tRNA genes.). The rps16 was absent from the cp genome of S. sisymbriifolium, resulting in a nonsense mutation. Twelve hotspot regions of the cp genome were identified, which showed a series of sequence variations and differed significantly in the inverted repeat/single-copy boundary regions. Furthermore, phylogenetic analysis was conducted using 46 cp genomic sequences to determine interspecific genetic and phylogenetic relationships in Solanum species. All species formed two branches, one of which contained all cultivars of the subgenus Leptostemonum. The cp genome data and phylogenetic analysis provides molecular evidence revealing the origin and evolutionary relationships of S. melongena and its wild relatives. Our findings suggest precise intra- and interspecies relatedness within the subgenus Leptostemonum, which has positive implications for work on improvements in eggplant breeding, particularly in producing heterosis, expanding the source of species variation, and breeding new varieties.

3.
J Environ Manage ; 337: 117759, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-36948144

RESUMO

The establishment of specific targets for the global carbon peaking and neutrality raises urgent requirements for prediction of CO2 emission performance indexes (CEPIs) and industrial structure optimization. However, accurate multi-objective prediction of CEPIs is still a knotty problem. In the present study, multihead attention-based convolutional neural network (MHA-CNN) model was proposed for accurate prediction of 4 CEPIs and further provided the rational suggestions for further industrial structure optimization. The proposed MHA-CNN model introduces deep learning mechanism with efficient resolution strategies for training model overfitting, feature extraction, and self-supervised learning to acquire the adaptability for CEPIs. Multihead attention (MHA) mechanism plays important roles in influence weight interpretation of variables to facilitate the prediction performance of CNN on CEPIs. The MHA-CNN model presented its overwhelmingly superior performance to CNN model and long short-term memory (LSTM) model, two frequently-used models, in multi-objective prediction of CEPIs using 8 influence variables, which highlighted advantages of MHA module in multi-dimensional feature extraction. Additionally, contributions of influence variables to CEPIs based on MHA analyses presented relatively high consistency with the geographical distribution analyses, indicating the excellent capacity of the MHA module in variable weights identification and contribution dissection. Based on the more accurate prediction results by MHA-CNN than those by CNN and LSTM model, the increase in the tertiary industry and the decreases in the first and secondary industries are conducive to improvement of total-factor carbon emission efficiency and further enhancement of effective energy utilization in regions with inefficient carbon emissions. This study provides insights towards the critical roles of the proposed MHA-CNN model in accurate multi-objective prediction of CEPIs and further industrial structure optimization for improvement of total-factor carbon emission efficiency.


Assuntos
Dióxido de Carbono , Carbono , Indústrias , Redes Neurais de Computação , Projetos de Pesquisa
4.
J Exp Bot ; 72(20): 7035-7048, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34255841

RESUMO

Although autocatalytic ethylene biosynthesis plays an important role in the ripening of climacteric fruits, our knowledge of the network that promotes it remains limited. We identified white fruit (wf), a tomato mutant that produces immature fruit that are white and that ripen slowly. We found that an inversion on chromosome 10 disrupts the LUTESCENT2 (L2) gene, and that white fruit is allelic to lutescent2. Using CRISPR/Cas9 technology we knocked out L2 in wild type tomato and found that the l2-cr mutants produced phenotypes that were very similar to white fruit (lutescent2). In the l2-cr fruit, chloroplast development was impaired and the accumulation of carotenoids and lycopene occurred more slowly than in wild type. During fruit ripening in l2-cr mutants, the peak of ethylene release was delayed, less ethylene was produced, and the expression of ACO genes was significantly suppressed. We also found that exogenous ethylene induces the expression of L2 and that ERF.B3, an ethylene response factor, binds to the promoter of the L2 gene and activates its transcription. Thus, the expression of L2 is regulated by exogenous ethylene. Taken together, our results indicate that ethylene may affect the expression of L2 gene and that L2 participates in autocatalytic ethylene biosynthesis during tomato fruit ripening.


Assuntos
Frutas , Regulação da Expressão Gênica de Plantas , Cloroplastos/metabolismo , Etilenos , Frutas/genética , Frutas/metabolismo , Metaloproteases , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
J Integr Neurosci ; 19(4): 679-685, 2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33378842

RESUMO

Postoperative cognitive dysfunction is a common neurological complication, characterized by impaired learning and memory, that occurs after anesthesia and surgery, especially in elderly patients. The traditional Chinese medicine baicalin is known to have neuroprotective effects. Therefore, we have investigated whether baicalin can improve postoperative cognitive impairment in aged rats after splenectomy. A total of 60 Sprague Dawley rats were randomly divided, equally, into the splenectomy, sham operation (Sham), low-dose baicalin (Baicalin A), medium-dose baicalin (Baicalin B), and high-dose baicalin (Baicalin C) groups. Splenectomy was performed under anesthesia in all groups except for the Sham group, in which an appropriate concentration of saline was administered. The effects of baicalin on learning and memory were examined by the Y-maze behavioral experiments. Although splenectomy had a negative effect on cognitive function in the acute phase, all the rats spontaneously recovered on a postoperative day seven. Nonetheless, in the acute phase, the medium and high doses of baicalin slightly alleviated these effects of the procedure. The protein expression of the inflammatory cytokines tumor necrosis factor-α, Interleukin-6, and Interleukin-1ß was assessed using enzyme-linked immunosorbent assay. Their levels were elevated in the acute phase but were returned to normal with the medium and high dose of baicalin. Real-time PCR analysis of the mRNA expression of the N-methyl-D-aspartic acid receptor TNF-α, which is known to be involved in long-term potentiation, revealed that baicalin promoted its transcription. Thus, the findings indicate that baicalin may improve postoperative cognitive memory dysfunction in postoperative cognitive dysfunction in rats via anti-inflammatory mechanisms and pathways that involve N-methyl-D-aspartate receptor 2B subunit.


Assuntos
Envelhecimento , Anti-Inflamatórios não Esteroides/farmacologia , Flavonoides/farmacologia , Inflamação/prevenção & controle , Aprendizagem em Labirinto/efeitos dos fármacos , Complicações Cognitivas Pós-Operatórias/prevenção & controle , Esplenectomia/efeitos adversos , Doença Aguda , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Comportamento Animal/efeitos dos fármacos , Citocinas/metabolismo , Modelos Animais de Doenças , Flavonoides/administração & dosagem , Inflamação/etiologia , Inflamação/imunologia , Inflamação/metabolismo , Masculino , Complicações Cognitivas Pós-Operatórias/etiologia , Complicações Cognitivas Pós-Operatórias/imunologia , Complicações Cognitivas Pós-Operatórias/metabolismo , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
6.
Mod Rheumatol Case Rep ; 8(2): 361-364, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38343286

RESUMO

Synovitis, acne, palmoplantar pustulosis, hyperostosis, and osteitis (SAPHO) syndrome is a rare and refractory autoinflammatory disease, and there is no consensus on its treatment. Stellate ganglion block (SGB) blocks sympathetic nerves, ameliorates immune dysfunction, and alleviates stress response, which has been used to treat various chronic pain syndromes, arrhythmias, and post-traumatic stress disorder (PTSD). Also, the SGB has been reported to be successfully used to treat certain skin diseases, autoinflammatory diseases, and menopausal symptoms. In this study, over 3 years of follow-up, we found that SGB successfully intervened the symptoms of SAPHO syndrome, including sternoclavicular joint arthritis and palmoplantar pustulosis.


Assuntos
Síndrome de Hiperostose Adquirida , Bloqueio Nervoso Autônomo , Gânglio Estrelado , Humanos , Síndrome de Hiperostose Adquirida/diagnóstico , Síndrome de Hiperostose Adquirida/terapia , Bloqueio Nervoso Autônomo/métodos , Feminino , Resultado do Tratamento , Pessoa de Meia-Idade , Adulto
7.
Heliyon ; 10(9): e29517, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38720714

RESUMO

Purpose: This investigation was conceived to engineer and appraise a pioneering clinical nomogram, crafted to bridge the extant chasm in literature regarding the postoperative risk stratification for deep vein thrombosis (DVT) in the aftermath of lower extremity orthopedic procedures. This novel tool offers a sophisticated and discerning algorithm for risk prediction, heretofore unmet by existing methodologies. Methods: In this retrospective observational study, clinical records of hospitalized patients who underwent lower extremity orthopedic surgery were collected at the Wuxi TCM Hospital Affiliated to the Nanjing University of Chinese Medicine between Jan 2017 and Oct 2019. The univariate and multivariate analysis with the backward stepwise method was applied to select features for the predictive nomogram. The performance of the nomogram was evaluated with respect to its discriminant capability, calibration ability, and clinical utility. Result: A total of 5773 in-hospital patients were eligible for the study, with the incidence of deep vein thrombosis being approximately 1 % in this population. Among 31 variables included, 5 of them were identified to be the predictive features in the nomogram, including age, mean corpuscular hemoglobin concentration (MCHC), D-dimer, platelet distribution width (PDW), and thrombin time (TT). The area under the receiver operating characteristic (ROC) curve in the training and validation cohort was 85.9 % (95%CI: 79.96 %-90.04 %) and 85.7 % (95%CI: 78.96 %-90.69 %), respectively. Both the calibration curves and decision curve analysis demonstrated the overall satisfactory performance of the model. Conclusion: Our groundbreaking nomogram is distinguished by its unparalleled accuracy in discriminative and calibrating functions, complemented by its tangible clinical applicability. This innovative instrument is set to empower clinicians with a robust framework for the accurate forecasting of postoperative DVT, thus facilitating the crafting of bespoke and prompt therapeutic strategies, aligning with the rigorous standards upheld by the most esteemed biomedical journals.

8.
Adv Mater ; 35(36): e2301338, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37295411

RESUMO

Polycyclic aromatic compounds with an open-shell singlet diradical ground state, namely singlet diradicals, have recently gained attention in the fields of organic electronics, photovoltaics, and spintronics owing to their unique electronic structures and properties. Notably, singlet diradicals exhibit tunable redox amphoterism, which makes them excellent redox-active materials for biomedical applications. However, the safety and therapeutic efficacy of singlet diradicals in biological systems have not yet been explored. Herein, the study presents a newly designed singlet diradical nanomaterial, diphenyl-substituted biolympicenylidene (BO-Ph), exhibiting low cytotoxicity in vitro, non-significant acute nephrotoxicity in vivo, and the ability to induce metabolic reprogramming in kidney organoids. Integrated transcriptome and metabolome analyses reveal that the metabolism of BO-Ph stimulates glutathione (GSH) synthesis and fatty acid degradation, increases the levels of intermediates in the tricarboxylic acid (TCA) and carnitine cycles, and eventually boosts oxidative phosphorylation (OXPHOS) under redox homeostasis. Benefits of BO-Ph-induce metabolic reprogramming in kidney organoids include enhancing cellular antioxidant capacity and promoting mitochondrial function. The results of this study can facilitate the application of singlet diradical materials in the treatment of clinical conditions induced by mitochondrial abnormalities in kidney.


Assuntos
Nanopartículas , Nanoestruturas , Glutationa , Homeostase , Rim
9.
J Funct Biomater ; 14(9)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37754850

RESUMO

Chemotherapy (CT) plays an important role in the antitumor process, but the unsatisfactory therapeutic efficacy and the obvious toxic side effects of CT seriously restrict its application. To overcome the limitations of CT, the strategy of chemotherapy enhanced by chemodynamic therapy (CDT) and photothermal therapy (PTT) has been considered a promising approach to improve the anticancer effect. Herein, a novel GSH-activatable Cu2+-Quercetin network (QC) was synthesized via a convenient strategy to load Au nanoparticles (NPs) and DOX, named QCDA, for the synergistic therapy of CT/CDT/PTT. The results showed that QCDA exhibited GSH-sensitive degradation and "cargos" release in cancer cells, and then PTT and CDT caused by Au NPs and Cu+ significantly enhanced the CT effect of DOX and Quercetin on anticancer. More importantly, the PTT and depleted GSH accelerated the Fenton-like ionization process resulting in facilitating the CDT efficiency. Collectively, the multi-mode synergistic strategy of CT/CDT/PTT, which showed an excellent therapeutic effect, maybe a potential therapeutic pathway for anticancer.

10.
ACS Biomater Sci Eng ; 8(9): 3924-3932, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35929757

RESUMO

Gold nanoparticle-based point-of-care tests (POCT) are one of the most widely used diagnostic tools for SARS-CoV-2 screening. However, the limitation of their insufficient sensitivity often leads to false negative results in early disease diagnostics. The ongoing pandemic of COVID-19 makes diagnostic tools that are more accurate, sensitive, simple, and affordable in high demand. In this work, we develop a platinum-decorated gold nanoparticle (Au@Pt NP)-based microfluidic chip immunoassay with a sensitivity surpassing that of paper-based detection of nucleocapsid (N) protein, one of the most conserved biomarkers of COVID-19. The synthesized Au@Pt NPs show high stability and catalytic activity in complex environments. The catalytic amplification of Au@Pt NPs enables naked-eye detection of N protein in the low femtogram range (ca. 0.1 pg/mL) and the detection of throat swab samples in under 40 min. This microfluidic chip immunoassay is easy for operation and readout without instrument assistance, making it more suitable for on-site detection and future pathogen surveillance.


Assuntos
COVID-19 , Nanopartículas Metálicas , COVID-19/diagnóstico , Colorimetria/métodos , Ouro , Humanos , Imunoensaio/métodos , Microfluídica , Platina , SARS-CoV-2
11.
Int J Biol Sci ; 17(3): 834-847, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33767592

RESUMO

Anterior gradient 2 (AGR2), a protein disulfide isomerase (PDI), is a well-established oncogene. Here, we found that Agr2-/- mice had a decreased fat mass and hepatic and serum lipid levels compared with their wild-type littermates after fasting, and exhibited reduced high-fat diet (HFD)-induced fat accumulation. Transgenic mice overexpressing AGR2 (Agr2/Tg) readily gained fat weight on a HFD but not a normal diet. Proteomic analysis of hepatic samples from Agr2-/- mice revealed that depletion of AGR2 impaired long-chain fatty acid uptake and activation but did not affect de novo hepatic lipogenesis. Further investigations led to the identification of several effector substrates, particularly fatty acid binding protein-1 (FABP1) as essential for the AGR2-mediated effects. AGR2 was coexpressed with FABP1, and knockdown of AGR2 resulted in a reduction in FABP1 stability. Physical interactions of AGR2 and FABP1 depended on the PDI motif in AGR2 and the formation of a disulfide bond between these two proteins. Overexpression of AGR2 but not a mutant AGR2 protein lacking PDI activity suppressed lipid accumulation in cells lacking FABP1. Moreover, AGR2 deficiency significantly reduced fatty acid absorption in the intestine, which might be resulted from decreased fatty acid transporter CD36 in mice. These findings demonstrated a novel role of AGR2 in fatty-acid uptake and activation in both the liver and intestine, which contributed to the AGR2-mediated lipid accumulation, suggesting that AGR2 is an important regulator of whole-body lipid metabolism and down-regulation of AGR2 may antagonize the development of obesity.


Assuntos
Proteínas de Ligação a Ácido Graxo/metabolismo , Metabolismo dos Lipídeos , Mucoproteínas/metabolismo , Proteínas Oncogênicas/metabolismo , Animais , Ácidos Graxos/metabolismo , Intestinos/metabolismo , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout
12.
Aging (Albany NY) ; 12(17): 17582-17600, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32927432

RESUMO

The diabetes drug metformin has recently been shown to possess anti-cancer properties when used with other chemotherapeutic drugs. However, detailed mechanisms by which metformin improves cancer treatment are poorly understood. Here we provide evidence in HepG2 hepatocellular carcinoma cells that metformin sensitizes cisplatin-resistant HepG2 cells (HepG2/DDP) through increasing cellular glycolysis and suppressing Nrf2-dependent transcription. We show that metformin increases glucose uptake and enhances glucose metabolism through glycolytic pathway, resulting in elevated concentrations of intracellular NADPH and lactate. Consistently, high glucose medium suppresses Nrf2-dependent transcription and sensitizes HepG2/DDP cells to cisplatin. Elevated glycolysis was required for metformin to regulate Nrf2-dependent transcription and cisplatin sensitivity, as inhibition of glycolysis with 2-Deoxy-D-glucose (2-DG) significantly mitigates the beneficial effect of metformin. Together, our study has revealed an important biological process and gene transcriptional program underlying the beneficial effect of metformin on reducing chemo-resistance in HepG2 cells and provided new information on improving chemotherapy of liver cancers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA