Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Gastroenterology ; 166(1): 155-167.e2, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37832924

RESUMO

BACKGROUND & AIMS: Endoscopic assessment of ulcerative colitis (UC) typically reports only the maximum severity observed. Computer vision methods may better quantify mucosal injury detail, which varies among patients. METHODS: Endoscopic video from the UNIFI clinical trial (A Study to Evaluate the Safety and Efficacy of Ustekinumab Induction and Maintenance Therapy in Participants With Moderately to Severely Active Ulcerative Colitis) comparing ustekinumab and placebo for UC were processed in a computer vision analysis that spatially mapped Mayo Endoscopic Score (MES) to generate the Cumulative Disease Score (CDS). CDS was compared with the MES for differentiating ustekinumab vs placebo treatment response and agreement with symptomatic remission at week 44. Statistical power, effect, and estimated sample sizes for detecting endoscopic differences between treatments were calculated using both CDS and MES measures. Endoscopic video from a separate phase 2 clinical trial replication cohort was performed for validation of CDS performance. RESULTS: Among 748 induction and 348 maintenance patients, CDS was lower in ustekinumab vs placebo users at week 8 (141.9 vs 184.3; P < .0001) and week 44 (78.2 vs 151.5; P < .0001). CDS was correlated with the MES (P < .0001) and all clinical components of the partial Mayo score (P < .0001). Stratification by pretreatment CDS revealed ustekinumab was more effective than placebo (P < .0001) with increasing effect in severe vs mild disease (-85.0 vs -55.4; P < .0001). Compared with the MES, CDS was more sensitive to change, requiring 50% fewer participants to demonstrate endoscopic differences between ustekinumab and placebo (Hedges' g = 0.743 vs 0.460). CDS performance in the JAK-UC replication cohort was similar to UNIFI. CONCLUSIONS: As an automated and quantitative measure of global endoscopic disease severity, the CDS offers artificial intelligence enhancement of traditional MES capability to better evaluate UC in clinical trials and potentially practice.


Assuntos
Colite Ulcerativa , Humanos , Inteligência Artificial , Colite Ulcerativa/diagnóstico , Colite Ulcerativa/tratamento farmacológico , Colonoscopia/métodos , Computadores , Indução de Remissão , Índice de Gravidade de Doença , Ustekinumab/efeitos adversos
2.
Anesthesiology ; 137(5): 586-601, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35950802

RESUMO

BACKGROUND: Postoperative hemodynamic deterioration among cardiac surgical patients can indicate or lead to adverse outcomes. Whereas prediction models for such events using electronic health records or physiologic waveform data are previously described, their combined value remains incompletely defined. The authors hypothesized that models incorporating electronic health record and processed waveform signal data (electrocardiogram lead II, pulse plethysmography, arterial catheter tracing) would yield improved performance versus either modality alone. METHODS: Intensive care unit data were reviewed after elective adult cardiac surgical procedures at an academic center between 2013 and 2020. Model features included electronic health record features and physiologic waveforms. Tensor decomposition was used for waveform feature reduction. Machine learning-based prediction models included a 2013 to 2017 training set and a 2017 to 2020 temporal holdout test set. The primary outcome was a postoperative deterioration event, defined as a composite of low cardiac index of less than 2.0 ml min-1 m-2, mean arterial pressure of less than 55 mmHg sustained for 120 min or longer, new or escalated inotrope/vasopressor infusion, epinephrine bolus of 1 mg or more, or intensive care unit mortality. Prediction models analyzed data 8 h before events. RESULTS: Among 1,555 cases, 185 (12%) experienced 276 deterioration events, most commonly including low cardiac index (7.0% of patients), new inotrope (1.9%), and sustained hypotension (1.4%). The best performing model on the 2013 to 2017 training set yielded a C-statistic of 0.803 (95% CI, 0.799 to 0.807), although performance was substantially lower in the 2017 to 2020 test set (0.709, 0.705 to 0.712). Test set performance of the combined model was greater than corresponding models limited to solely electronic health record features (0.641; 95% CI, 0.637 to 0.646) or waveform features (0.697; 95% CI, 0.693 to 0.701). CONCLUSIONS: Clinical deterioration prediction models combining electronic health record data and waveform data were superior to either modality alone, and performance of combined models was primarily driven by waveform data. Decreased performance of prediction models during temporal validation may be explained by data set shift, a core challenge of healthcare prediction modeling.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Hipotensão , Humanos , Adulto , Registros Eletrônicos de Saúde , Aprendizado de Máquina , Epinefrina
3.
J Med Internet Res ; 24(3): e27934, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35230244

RESUMO

BACKGROUND: Monitoring eating is central to the care of many conditions such as diabetes, eating disorders, heart diseases, and dementia. However, automatic tracking of eating in a free-living environment remains a challenge because of the lack of a mature system and large-scale, reliable training set. OBJECTIVE: This study aims to fill in this gap by an integrative engineering and machine learning effort and conducting a large-scale study in terms of monitoring hours on wearable-based eating detection. METHODS: This prospective, longitudinal, passively collected study, covering 3828 hours of records, was made possible by programming a digital system that streams diary, accelerometer, and gyroscope data from Apple Watches to iPhones and then transfers the data to the cloud. RESULTS: On the basis of this data collection, we developed deep learning models leveraging spatial and time augmentation and inferring eating at an area under the curve (AUC) of 0.825 within 5 minutes in the general population. In addition, the longitudinal follow-up of the study design encouraged us to develop personalized models that detect eating behavior at an AUC of 0.872. When aggregated to individual meals, the AUC is 0.951. We then prospectively collected an independent validation cohort in a different season of the year and validated the robustness of the models (0.941 for meal-level aggregation). CONCLUSIONS: The accuracy of this model and the data streaming platform promises immediate deployment for monitoring eating in applications such as diabetic integrative care.


Assuntos
Aprendizado de Máquina , Refeições , Área Sob a Curva , Comportamento Alimentar , Humanos , Estudos Prospectivos
4.
Artigo em Inglês | MEDLINE | ID: mdl-38533187

RESUMO

In this paper we propose feature selection and machine learning approaches to identify a combination of features for risk prediction of Temporomandibular Joint (TMJ) disease progression. In a sample of 32 TMJ osteoarthritis and 38 controls, feature selection of 5 clinical comorbidities, 43 quantitative imaging, 28 biological features and was performed using Maximum Relevance Minimum Redundancy, Chi-Square and Least Absolute Shrinkage and Selection Operator (LASSO) and Recursive Feature Elimination. We compared the performance of learning using concave and convex kernels (LUCCK), Support Vector Machine (SVM) and Random Forest (RF) approaches to predict disease cure/improvement or persistence/worsening. We show that the SVM model using LASSO achieves area under the curve (AUC), sensitivity and precision of 0.92±0.08, 0.85±0.19 and 0.76 ±0.18, respectively. Baseline levels of headaches, lower back pain, restless sleep, muscle soreness, articular fossa bone surface/bone volume and trabecular separation, condylar High Gray Level Run Emphasis and Short Run High Gray Level Emphasis, saliva levels of 6Ckine, Osteoprotegerin (OPG) and Angiogenin, and serum levels of 6ckine and Brain Derived Neurotrophic Factor (BDNF) were the most frequently occurring features to predict more severe TMJ osteoarthritis prognosis.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38533395

RESUMO

This paper proposes a machine learning model using privileged information (LUPI) and normalized mutual information feature selection method (NMIFS) to build a robust and accurate framework to diagnose patients with Temporomandibular Joint Osteoarthritis (TMJ OA). To build such a model, we employ clinical, quantitative imaging and additional biological markers as privileged information. We show that clinical features play a leading role in the TMJ OA diagnosis and quantitative imaging features, extracted from cone-beam computerized tomography (CBCT) scans, improve the model performance. As the proposed LUPI model employs biological data in the training phase (which boosted the model performance), this data is unnecessary for the testing stage, indicating the model can be widely used even when only clinical and imaging data are collected. The model was validated using 5-fold stratified cross-validation with hyperparameter tuning to avoid the bias of data splitting. Our method achieved an AUC, specificity and precision of 0.81, 0.79 and 0.77, respectively.

6.
IEEE/ACM Trans Comput Biol Bioinform ; 19(3): 1387-1392, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34061750

RESUMO

We present here the Arkansas AI-Campus solution method for the 2019 Kidney Tumor Segmentation Challenge (KiTS19). Our Arkansas AI-Campus team participated the KiTS19 Challenge for four months, from March to July of 2019. This paper provides a summary of our methods, training, testing and validation results for this grand challenge in biomedical imaging analysis. Our deep learning model is an ensemble of U-Net models developed after testing many model variations. Our model has consistent performance on the local test dataset and the final competition independent test dataset. The model achieved local test Dice scores of 0.949 for kidney and tumor segmentation, and 0.601 for tumor segmentation, and the final competition test earned Dice scores 0.9470 and 0.6099 respectively. The Arkansas AI-Campus team solution with a composite DICE score of 0.7784 has achieved a final ranking of top fifty worldwide, and top five among the United States teams in the KiTS19 Competition.


Assuntos
Processamento de Imagem Assistida por Computador , Neoplasias Renais , Humanos , Neoplasias Renais/diagnóstico por imagem , Tomografia Computadorizada por Raios X
7.
Sci Rep ; 10(1): 20900, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33262425

RESUMO

One of the challenges with urgent evaluation of patients with acute respiratory distress syndrome (ARDS) in the emergency room (ER) is distinguishing between cardiac vs infectious etiologies for their pulmonary findings. We conducted a retrospective study with the collected data of 171 ER patients. ER patient classification for cardiac and infection causes was evaluated with clinical data and chest X-ray image data. We show that a deep-learning model trained with an external image data set can be used to extract image features and improve the classification accuracy of a data set that does not contain enough image data to train a deep-learning model. An analysis of clinical feature importance was performed to identify the most important clinical features for ER patient classification. The current model is publicly available with an interface at the web link: http://nbttranslationalresearch.org/ .


Assuntos
Aprendizado Profundo , Doença/classificação , Serviço Hospitalar de Emergência , Pacientes/classificação , Radiografia Torácica , Síndrome do Desconforto Respiratório/diagnóstico por imagem , Humanos , Síndrome do Desconforto Respiratório/etiologia , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA