Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Genomics ; 113(6): 3681-3695, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34509619

RESUMO

The storage quality of Hylocereus undatus was significantly improved by trypsin, a novel preservative. The transcriptomic results revealed that antioxidant signal pathways were induced, while lignin catabolic process was impeded by trypsin. In addition, the results of protein-protein interaction (PPI) network networks suggested that flavone 3'-O-methyltransferase 1 (OMT1), ferulic acid 5-hydroxylase 1 (CYP84A1), cellulose synthase isomer (CEV1), and 4-coumarate-CoA ligase 3 (4CL3) act as hubs of peroxidases, lignin related proteins, and proteins involved in the phenylpropanoid metabolism (PLPs) induced by trypsin. Trypsin also regulated the biosynthesis of lignin, chlorogenic acid, and flavonoids. Caffeic acid might be the hub in the metabolic network of the early pathways of phenylpropanoid biosynthesis. It has been hypothesized that trypsin might quickly induce lignin biosynthesis and then up-regulated bioactive metabolites to enhance storage quality of H. undatus.


Assuntos
Cactaceae , Lignina , Cactaceae/genética , Cactaceae/metabolismo , Lignina/metabolismo , Mapas de Interação de Proteínas , Transcriptoma , Tripsina
2.
J Food Biochem ; 45(1): e13538, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33152799

RESUMO

To further investigate the preservation mechanisms of trypsin, the synergistic mechanisms of trypsin and stoma-related genes were evaluated in Hylocereus undatus. Trypsin significantly induced the stoma closure and improved the storage quality of H. undatus. Transcriptomic analyses of H. undatus revealed that important antioxidant signal pathway, such as SREBP signaling pathway, cellular response to H2 O2 or cellular response to molecule of bacterial origin, were induced; while responses to water deprivation were impeded by trypsin. These results indicated that trypsin relieved pitaya of pressure of water deprivation and exhibited the protection on pitaya during storage. Furthermore, the analyses of networks of protein-protein interaction suggested that OST1, HK5, AT4G27585, and HIR1 act as hubs of stoma-related proteins induced by trypsin during storage of H. undatus. PRACTICAL APPLICATIONS: Preservation of fruit is becoming increasingly important to the world. Keep the balance of production and scavenging of reactive oxygen species is efficient to improve the storage quality of fruit. Trypsin had a novel superoxide anion scavenging activity and protect fruit cells from cellular injury induced by excess ROS. This article investigates the hub genes and interaction mechanisms of stoma closure induced by trypsin during the storage of H. undatus. The application of trypsin provides a new strategy for the quality control of fruit storage. Trypsin will have a broad market and development potential in the area of food additives.


Assuntos
Cactaceae , Transcriptoma , Frutas , Perfilação da Expressão Gênica , Tripsina/genética
3.
Plant Physiol Biochem ; 158: 497-507, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33257230

RESUMO

Trypsin is a novel superoxide scavenger. The storage quality of H. undatus was significantly improved by trypsin. To investigate the mechanism of flavonoid metabolism regulated by trypsin, combined analysis of widely targeted metabolomic and transcriptome were performed. GO and KEGG enrichment analyses of the transcriptome profiles of H. undatus revealed that some of the flavonoid related biosynthesis pathways were regulated by up or down patterns with the treatment of trypsin. Correlation analysis of flavonoid related genes expression in H. undatus provided a rationale for the functional significance of them. Furthermore, it has been revealed that the most significantly regulated flavonoid was catechin gallate in metabolomic profiles of H. undatus. The major route of flavonoid biosynthesis regulated by trypsin was also illustrated by both transcriptomic and metabolomic data. Finally, the results of PPI network revealed that C4H, HCT, and CYP75B1 acted as hub proteins involved in flavonoid metabolism regulated by trypsin.


Assuntos
Cactaceae , Catequina/análogos & derivados , Tripsina/farmacologia , Cactaceae/genética , Cactaceae/metabolismo , Catequina/metabolismo , Metaboloma , Transcriptoma
4.
Antioxidants (Basel) ; 9(2)2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-32079316

RESUMO

It has been revealed by us that superoxide scavenging is a new activity of trypsin. In this study, the synergistic mechanisms of trypsin and superoxide dismutases (SODs) were evaluated in Hylocereus undatus (pitaya). Trypsin significantly improved the storage quality of H. undatus, including weight loss impediment and decrease of cellular injury. The regulatory mechanisms of 16 SOD genes by trypsin were revealed using transcriptomic analysis on H. undatus. Results revealed that important physiological metabolisms, such as antioxidant activities or metal ion transport were induced, and defense responses were inhibited by trypsin. Furthermore, the results of protein-protein interaction (PPI) networks showed that besides the entire ROS network, the tiny SODs sub-network was also a scale-free network. Cu/Zn SODs acted as the hub that SODs synergized with trypsin during the storage of H. undatus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA