Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Adv Sci (Weinh) ; 11(15): e2306472, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342606

RESUMO

Myofibrillogenesis regulator-1 (MR-1) is a multifunctional protein involved in the development of various human tumors. The study is the first to report the promoting effect of MR-1 on the development and metastasis of non-small cell lung cancer (NSCLC). MR-1 is upregulated in NSCLC and positively associated with poor prognosis. The overexpression of MR-1 promotes the metastasis of NSCLC cells by stabilizing the expression of Notch3-ICD (NICD3) in the cytoplasm through enrichment analysis, in vitro and in vivo experimental researches. And Notch3 signaling can upregulate many genes related to metastasis. The stabilizing effect of MR-1 on NICD3 is achieved through the mono-ubiquitin lysosomal pathway and the specific E3 ubiquitin ligase is Itchy homolog (ITCH). There is a certain interaction between MR-1 and NICD3. Elevated MR-1 can affect the level of ITCH phosphorylation, reduce its E3 enzyme activity, and thus lead to reduce the ubiquitination and degradation of NICD3. Interference with the interaction between MR-1 and NICD3 can increase the degradation of NICD3 and impair the metastatic ability of NSCLC cells, which is a previously overlooked treatment option in NSCLC. In summary, interference with the interaction between MR-1 and NICD3 in the progression of lung cancer may be a promising therapeutic target.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Neoplasias Pulmonares/genética , Lisossomos/metabolismo , Desenvolvimento Muscular , Ubiquitina , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
2.
Acta Pharm Sin B ; 13(11): 4477-4501, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37969736

RESUMO

Pancreatic cancer is a more aggressive and refractory malignancy. Resistance and toxicity limit drug efficacy. Herein, we report a lower toxic and higher effective miriplatin (MPt)-loaded liposome, LMPt, exhibiting totally different anti-cancer mechanism from previously reported platinum agents. Both in gemcitabine (GEM)-resistant/sensitive (GEM-R/S) pancreatic cancer cells, LMPt exhibits prominent anti-cancer activity, led by faster cellular entry-induced larger accumulation of MPt. The level of caveolin-1 (Cav-1) determines entry rate and switch of entry pathways of LMPt, indicating a novel role of Cav-1 in nanoparticle entry. After endosome-lysosome processing, in unchanged metabolite, MPt is released and targets mitochondria to enhance binding of mitochondria protease LONP1 with POLG and TFAM, to degrade POLG and TFAM. Then, via PINK1-Parkin axis, mitophagy is induced by POLG and TFAM degradation-initiated mitochondrial DNA (mtDNA) replication blocking. Additionally, POLG and TFAM are identified as novel prognostic markers of pancreatic cancer, and mtDNA replication-induced mitophagy blocking mediates their pro-cancer activity. Our findings reveal that the target of this liposomal platinum agent is mitochondria but not DNA (target of most platinum agents), and totally distinct mechanism of MPt and other formulations of MPt. Self-assembly offers LMPt special efficacy and mechanisms. Prominent action and characteristic mechanism make LMPt a promising cancer candidate.

3.
Biochem Pharmacol ; 212: 115577, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37137416

RESUMO

Cancer stem cells (CSCs), a subpopulation of tumor cells with the features of self-renewal, tumor initiation, and insensitivity to common physical and chemical agents, are the key to cancer relapses, metastasis, and resistance. Accessible CSCs inhibitory strategies are primarily based on small molecule drugs, yet toxicity limits their application. Here, we report a liposome loaded with low toxicity and high effectiveness of miriplatin, lipo-miriplatin (LMPt) with high miriplatin loading, and robust stability, exhibiting a superior inhibitory effect on CSCs and non-CSCs. LMPt predominantly inhibits the survival of oxaliplatin-resistant (OXA-resistant) cells composed of CSCs. Furthermore, LMPt directly blocks stemness features of self-renewal, tumor initiation, unlimited proliferation, metastasis, and insensitivity. In mechanistic exploration, RNA sequencing (RNA-seq) revealed that LMPt downregulates the levels of pro-stemness proteins and that the ß-catenin-mediated stemness pathway is enriched. Further research shows that either in adherent cells or 3D-spheres, the ß-catenin-OCT4/NANOG axis, the vital pathway to maintain stemness, is depressed by LMPt. The consecutive activation of the ß-catenin pathway induced by mutant ß-catenin (S33Y) and OCT4/NANOG overexpression restores LMPt's anti-CSCs effect, elucidating the key role of the ß-catenin-OCT4/NANOG axis. Further studies revealed that the strengthened binding of ß-catenin and ß-TrCP initiates ubiquitination and degradation of ß-catenin induced by LMPt. In addition, the ApcMin/+ transgenic mouse model, in which colon tumors are spontaneously formed, demonstrates LMPt's potent anti-non-CSCs activity in vivo.


Assuntos
Neoplasias Colorretais , Proteínas Contendo Repetições de beta-Transducina , Animais , Camundongos , Linhagem Celular Tumoral , Proteínas Contendo Repetições de beta-Transducina/metabolismo , Proteínas Contendo Repetições de beta-Transducina/farmacologia , beta Catenina/metabolismo , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Células-Tronco Neoplásicas , Transformação Celular Neoplásica/patologia , Neoplasias Colorretais/metabolismo , Via de Sinalização Wnt , Proliferação de Células
4.
Cardiol Cardiovasc Med ; 6: 515-522, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36582309

RESUMO

Background: Hypertrophic cardiomyopathy (HCM) is defined by the presence of left ventricular hypertrophy (LVH) in the absence of other potentially causative cardiac, systemic, syndromic, or metabolic diseases [1]. It is the most common genetic abnormality of the myocardium, with an anaesthetized prevalence ranging from 1:500 to as high as 1:200 [2-4]. It is the primary cause of sudden cardiac death (SCD) among teenagers and athletes. Patient: A 56-year-old man presented with chest tightness and palpitations which had been occurring post-activity for the previous 6 months. The patient was advised to be admitted. He underwent echocardiography, cardiac magnetic resonance (CMR), coronary angiography (CAG) examination, and left ventriculography. He was diagnosed with hypertrophic obstructive cardiomyopathy (HOCM) with systolic anterior motion (SAM) phenomenon. Results: Echocardiography results showed that the interventricular septal thickness was 14-16 mm and that there were 2 degrees of SAM of the mitral valve. This resulted in severe stenosis of the left ventricular outflow tract (LVOT) and moderate to severe mitral insufficiency. Left ventriculography confirmed mitral regurgitation (MR) associated with HOCM with SAM phenomenon. Under the protection of a permanent pacemaker, the patient was treated with alcohol septal ablation (ASA). After discharge, the symptoms of chest tightness and palpitation did not recur. Conclusion: Beneficial effects were observed when patients with HOCM and SAM were treated with ASA under the condition of a permanent pacemaker.

5.
Biomedicines ; 10(3)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35327508

RESUMO

As an organelle, the endoplasmic reticulum (ER) is closely related to protein synthesis and modification. When physiological or pathological stimuli induce disorders of ER function, misfolded proteins trigger ER-phagy, which is beneficial for restoring cell homeostasis or promoting cell apoptosis. As a double-edged sword, ER-phagy actively participates in various stages of development and progression in tumor cells, regulating tumorigenesis and maintaining tumor cell homeostasis. Through the unfolded protein response (UPR), the B cell lymphoma 2 (BCL-2) protein family, the Caspase signaling pathway, and others, ER-phagy plays an initiating role in tumor occurrence, migration, stemness, and proliferation. At the same time, many vital proteins strongly associated with ER-phagy, such as family with sequence similarity 134 member B (FAM134B), translocation protein SEC62 (SEC62), and C/EBP-homologous protein (CHOP), can produce a marked effect in many complex environments, which ultimately lead to entirely different tumor fates. Our article comprehensively focused on introducing the relationship and interaction between ER-phagy and cancers, as well as their molecular mechanism and regulatory pathways. Via these analyses, we tried to clarify the possibility of ER-phagy as a potential target for cancer therapy and provide ideas for further research.

6.
Biomed Pharmacother ; 147: 112616, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35008001

RESUMO

Breast cancer (BC) is one of the most common malignant tumors in women globally, and its occurrence has surpassed lung cancer and become the biggest threat for women. At present, breast cancer treatment includes surgical resection or postoperative chemotherapy and radiotherapy. However, tumor relapse and metastasis usually lead to current therapy failure thanks to breast cancer stem cells (BCSCs)-mediated tumorigenicity and drug resistance. Drug resistance is mainly due to the long-term quiescent G0 phase, strong DNA repairability, and high expression of ABC transporter, and the tumorigenicity is reflected in the activation of various proliferation pathways related to BCSCs. Therefore, understanding the characteristics of BCSCs and their intracellular and extracellular molecular mechanisms is crucial for the development of targeted drugs for BCSCs. To this end, we discussed the latest developments in BCSCs research, focusing on the analysis of specific markers, critical signaling pathways that maintain the stemness of BCSCs,such as NOTCH, Wnt/ß-catenin, STAT3, Hedgehog, and Hippo-YAP signaling, immunomicroenviroment and summarizes targeting therapy strategies for stemness maintenance and differentiation, which provides a theoretical basis for further exploration of treating breast cancer and preventing relapse derived from BCSCs.


Assuntos
Neoplasias da Mama/patologia , Recidiva Local de Neoplasia/patologia , Células-Tronco Neoplásicas/metabolismo , Microambiente Tumoral , Feminino , Humanos
7.
Org Lett ; 24(32): 5941-5945, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35938920

RESUMO

Prenylemestrins A and B (1 and 2, respectively), two unusual epipolythiodioxopiperazines featuring a thioethanothio bridge instead of a polysulfide bridge, were isolated from the fungus Emericella sp. CPCC 400858 guided by genomic analysis. Their structures were determined by extensive spectroscopic data, NMR and ECD calculations, and X-ray diffraction analysis. A plausible biosynthetic pathway for 1 and 2 was proposed on the basis of gene cluster analysis. Prenylemestrins A and B exhibited cytotoxicities against human chronic myelocytic leukemia cell lines K562 and MEG-01.


Assuntos
Emericella , Cristalografia por Raios X , Emericella/química , Fungos , Genômica , Humanos , Espectroscopia de Ressonância Magnética , Estrutura Molecular
8.
Acta Pharm Sin B ; 12(1): 210-227, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35127381

RESUMO

Pancreatic adenocarcinoma (PAAD) is one of the most lethal malignancies. Although gemcitabine (GEM) is a standard treatment for PAAD, resistance limits its application and therapy. Secoemestrin C (Sec C) is a natural compound from the endophytic fungus Emericella, and its anticancer activity has not been investigated since it was isolated. Our research is the first to indicate that Sec C is a broad-spectrum anticancer agent and could exhibit potently similar anticancer activity both in GEM-resistant and GEM-sensitive PAAD cells. Interestingly, Sec C exerted a rapid growth-inhibiting effect (80% death at 6 h), which might be beneficial for patients who need rapid tumor shrinkage before surgery. Liquid chromatography/mass spectrometry and N-acetyl-l-cysteine (NAC) reverse assays show that Sec C sulfates cysteines to disrupt disulfide-bonds formation in endoplasmic reticulum (ER) proteins to cause protein misfolding, leading to ER stress and disorder of lipid biosynthesis. Microarray data and subsequent assays show that ER stress-mediated ER-associated degradation (ERAD) ubiquitinates and downregulates YAP to enhance ER stress via destruction complex (YAP-Axin-GSK-ßTrCP), which also elucidates a unique degrading style for YAP. Potent anticancer activity in GEM-resistant cells and low toxicity make Sec C a promising anti-PAAD candidate.

9.
Biomed Pharmacother ; 133: 110956, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33189066

RESUMO

Breast cancer is the most commonly diagnosed cancer among women. Although routine and targeted therapies have improved the survival rate, there are still considerable challenges in the treatment of breast cancer. Metastasis is the leading cause of death in patients diagnosed with breast cancer. Yes-associated protein (YAP) and/or PDZ binding motif (TAZ) are usually abnormally activated in breast cancer leading to a variety of effects on tumour promotion, such as epithelial-mesenchymal transition, cancer stem cell production and drug-resistance. The abnormal activation of YAP/TAZ can affect metastasis-related processes and promote cancer progression and metastasis by interacting with some metastasis-related factors and pathways. In this article, we summarise the evidence that YAP/TAZ regulates breast cancer metastasis, its post-translational modification mechanisms, and the latest advances in the treatment of YAP/TAZ-related breast cancer metastasis, besides providing a new strategy of YAP/TAZ-based treatment of human breast cancer.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-yes/metabolismo , Transativadores/metabolismo , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Feminino , Humanos , Terapia de Alvo Molecular , Metástase Neoplásica , Domínios Proteicos , Proteínas Proto-Oncogênicas c-yes/química , Transdução de Sinais , Relação Estrutura-Atividade , Transativadores/química , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional
10.
J Drug Target ; 29(6): 576-591, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33554661

RESUMO

Mitophagy is a selective form of macroautophagy in which dysfunctional and damaged mitochondria can be efficiently degraded, removed and recycled through autophagy. Selective removal of damaged or fragmented mitochondria is critical to the functional integrity of the entire mitochondrial network and cells. In past decades, numerous studies have shown that mitophagy is involved in various diseases; however, since the dual role of mitophagy in tumour development, mitophagy role in tumour is controversial, and further elucidation is needed. That is, although mitophagy has been demonstrated to contribute to carcinogenesis, cell migration, ferroptosis inhibition, cancer stemness maintenance, tumour immune escape, drug resistance, etc. during cancer progression, many research also shows that to promote cancer cell death, mitophagy can be induced physiologically or pharmacologically to maintain normal cellular metabolism and prevent cell stress responses and genome damage by diminishing mitochondrial damage, thus suppressing tumour development accompanying these changes. Signalling pathway-specific molecular mechanisms are currently of great biological significance in the identification of potential therapeutic targets. Here, we review recent progress of molecular pathways mediating mitophagy including both canonical pathways (Parkin/PINK1- and FUNDC1-mediated mitophagy) and noncanonical pathways (FKBP8-, Nrf2-, and DRP1-mediated mitophagy); and the regulation of these pathways, and abovementioned pro-cancer and pro-death roles of mitophagy. Finally, we summarise the role of mitophagy in cancer therapy. Mitophagy can potentially be acted as the target for cancer therapy by promotion or inhibition.


Assuntos
Mitofagia/fisiologia , Terapia de Alvo Molecular , Neoplasias/terapia , Animais , Movimento Celular/fisiologia , Progressão da Doença , Ferroptose/fisiologia , Humanos , Mitocôndrias/patologia , Neoplasias/patologia
11.
J Drug Target ; 28(1): 23-32, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31094236

RESUMO

Src family kinases (SFKs) are non-receptor tyrosine kinases and are involved in various cellular functions (proliferation, differentiation, migration, survival and invasion) by regulating downstream pathways. Considerable evidence suggests that co- and post-translational modifications are highly related to the activation of SFKs and their downstream signals. How SFKs are activated and how their subsequent cascades were regulated has been reviewed in previous reports. However, the contribution of co- and post-translational modification to SFKs activation has not been fully elucidated. This review focuses on the effect of these modifications on SFKs activity according to structural and biochemical studies and uncovers the significance of co-and post-translational modifications in the regulation of SFKs activity.


Assuntos
Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Quinases da Família src/química , Quinases da Família src/metabolismo , Fosforilação/fisiologia , Transdução de Sinais , Relação Estrutura-Atividade
12.
J Drug Target ; 28(1): 1-10, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31244351

RESUMO

In recent years, the rate of colorectal cancer has sharply increased, especially in China, where it ranks second for the number of cancer fatalities. Currently, the treatment of colorectal cancer patients involves the combination of resection surgery and treatment with postoperative anticancer drugs such as 5-FU and oxaliplatin. However, recurrence and metastasis after treatment are still the dominant reasons for the low survival rate. Colorectal cancer stem cells (CSCs) are regarded as the key contributors to tumour recurrence and metastasis due to their resistance to chemotherapy drugs and their extremely high tumourigenicity. Once CSCs overcome chemotherapy treatment, they continue to survive and reinitiate proliferation to form tumours, leading to recurrence. The dominant reason for CSC resistance is that most anticancer drugs are aimed at inhibiting proliferative pathways in cancer cells that differ from those in CSCs. Therefore, studies on the characteristics of CSCs and their intracellular molecular pathways are essential for the exploration of CSC-targeted drugs. In this report, we review recent advances in the research of CSCs and, in particular, review the important intracellular molecular pathways, such as HOXA5-catenin, STRAP-NOTCH and YAP/TAZ, related to the maintenance and differentiation of stem cells to generate a theoretical basis for the exploration of CSC-targeted drugs.


Assuntos
Neoplasias Colorretais/patologia , Células-Tronco Neoplásicas/patologia , Biomarcadores Tumorais , Reparo do DNA/fisiologia , Resistencia a Medicamentos Antineoplásicos/fisiologia , Humanos , Proteínas de Membrana/fisiologia , Metástase Neoplásica/patologia , Recidiva Local de Neoplasia , Proteínas de Ligação a RNA/metabolismo , Receptores Notch/metabolismo , Fatores de Transcrição/metabolismo , Via de Sinalização Wnt/fisiologia
13.
J Drug Target ; 27(3): 300-305, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30207743

RESUMO

Ras-GTPase-activating protein SH3 domain-binding protein 1 (G3BP1) is a SH3 domain-binding protein that is overexpressed in a variety of tumour tissues and cancers, such as head and neck cancer, lung cancer, prostate cancer, colon cancer and breast cancer. G3BP1 promotes tumour cell proliferation and metastasis and inhibits apoptosis by regulating the Ras, TGF-ß/Smad, Src/FAK and p53 signalling pathways. At present, polypeptides targeting G3BP1 have shown anti-tumour activity and G3BP1 also involved in anti-cancer effects of some polyphenolic compounds (resveratrol and EGCG). Therefore G3BP1 may be a potential target for tumour treatment.


Assuntos
Antineoplásicos/farmacologia , DNA Helicases/metabolismo , Neoplasias/tratamento farmacológico , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Animais , Apoptose/fisiologia , Proliferação de Células/fisiologia , Humanos , Neoplasias/patologia , Peptídeos/farmacologia , Polifenóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA