Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Arch Biochem Biophys ; 753: 109893, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309681

RESUMO

Adipose tissue-derived stem cells (ADSCs) are a kind of stem cells with multi-directional differentiation potential, which mainly restore tissue repair function and promote cell regeneration. It can be directionally differentiated into Schwann-like cells to promote the repair of peripheral nerve injury. Glial cell line-derived neurotrophic factor (GDNF) plays an important role in the repair of nerve injury, but the underlying mechanism remains unclear, which seriously limits its further application.The study aimed to identify the molecular mechanism by which overexpression of glial cell line-derived neurotrophic factor (GDNF) facilitates the differentiation of ADSCs into Schwann cells, enhancing nerve regeneration after injury. In vitro, ADSCs overexpressing GDNF for 48 h exhibited changes in their morphology, with 80% of the cells having two or more prominences. Compared with that of ADSCs, GDNF-ADSCs exhibited increased expression of the Schwann cell marker S100, nerve damage repair-related factors.ADSC cells in normal culture and ADSC cells were overexpressing GDNF(GDNF-ADSCs) were analysed using TMT-Based Proteomic Analysis and revealed a significantly higher expression of MTA1 in GDNF-ADSCs than in control ADSCs. Hes1 expression was significantly higher in GDNF-ADSCs than in ADSCs and decreased by MTA1 silencing, along with a simultaneous decrease in the expression of S100 and nerve damage repair factors. These findings indicate that GDNF promotes the differentiation of ADSCs into Schwann cells and induces factors that accelerate peripheral nerve damage repair.


Assuntos
Fator Neurotrófico Derivado de Linhagem de Célula Glial , Proteômica , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Regeneração Nervosa , Tecido Adiposo , Diferenciação Celular , Células de Schwann
2.
J Nanobiotechnology ; 22(1): 425, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030543

RESUMO

Hair follicle (HF) regeneration during wound healing continues to present a significant clinical challenge. Dermal papilla cell-derived exosomes (DPC-Exos) hold immense potential for inducing HF neogenesis. However, the accurate role and underlying mechanisms of DPC-Exos in HF regeneration in wound healing remain to be fully explained. This study, represents the first analysis into the effects of DPC-Exos on fibroblasts during wound healing. Our findings demonstrated that DPC-Exos could stimulate the proliferation and migration of fibroblasts, more importantly, enhance the hair-inducing capacity of fibroblasts. Fibroblasts treated with DPC-Exos were capable of inducing HF neogenesis in nude mice when combined with neonatal mice epidermal cells. In addition, DPC-Exos accelerated wound re-epithelialization and promoted HF regeneration during the healing process. Treatment with DPC-Exos led to increased expression levels of the Wnt pathway transcription factors ß-catenin and Lef1 in both fibroblasts and the dermis of skin wounds. Specifically, the application of a Wnt pathway inhibitor reduced the effects of DPC-Exos on fibroblasts and wound healing. Accordingly, these results offer evidence that DPC-Exos promote HF regeneration during wound healing by enhancing the hair-inducing capacity of fibroblasts and activating the Wnt/ß-catenin signaling pathway. This suggests that DPC-Exos may represent a promising therapeutic strategy for achieving regenerative wound healing.


Assuntos
Proliferação de Células , Exossomos , Fibroblastos , Folículo Piloso , Camundongos Nus , Regeneração , Vibrissas , Via de Sinalização Wnt , Cicatrização , beta Catenina , Animais , Camundongos , Fibroblastos/metabolismo , Exossomos/metabolismo , Vibrissas/fisiologia , beta Catenina/metabolismo , Derme/metabolismo , Movimento Celular , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo
3.
Arch Biochem Biophys ; 743: 109645, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37225009

RESUMO

Deep second-degree burns heal slowly, and promoting the healing process is a focus of clinical research. Sestrin2 is a stress-inducible protein with antioxidant and metabolic regulatory effects. However, its role during acute dermal and epidermal re-epithelialization in deep second-degree burns is unknown. In this study, we aimed to explore the role and molecular mechanism of sestrin2 in deep second-degree burns as a potential treatment target for burn wounds. To explore the effects of sestrin2 on burn wound healing, we established a deep second-degree burn mouse model. Then we detected the expression of sestrin2 by western blot and immunohistochemistry after obtaining the wound margin of full-thickness burned skin. The effects of sestrin2 on burn wound healing were explored in vivo and in vitro through interfering sestrin2 expression using siRNAs or the small molecule agonist of sestrin2, eupatilin. We also investigated the molecular mechanism of sestrin2 in promoting burn wound healing by western blot and CCK-8 assay. Our in vivo and in vitro deep second-degree burn wound healing model demonstrated that sestrin2 was promptly induced at murine skin wound edges. The small molecule agonist of sestrin2 accelerated the proliferation and migration of keratinocytes, as well as burn wound healing. Conversely, the healing of burn wounds was delayed in sestrin2-deficient mice and was accompanied by the secretion of inflammatory cytokines as well as the suppression of keratinocyte proliferation and migration. Mechanistically, sestrin2 promoted the phosphorylation of the PI3K/AKT pathway, and inhibition of PI3K/AKT pathway abrogated the promoting role of sestrin2 in keratinocyte proliferation and migration. Therefore, sestrin2 plays a critical role in activation of the PI3K/AKT pathway to promote keratinocyte proliferation and migration, as well as re-epithelialization in the process of deep second-degree burn wound repair.


Assuntos
Queimaduras , Proteínas Proto-Oncogênicas c-akt , Animais , Camundongos , Queimaduras/tratamento farmacológico , Queimaduras/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pele/metabolismo , Cicatrização
4.
J Cell Mol Med ; 25(3): 1554-1567, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33410606

RESUMO

Hypertrophic scar (HS) is a severe fibrotic skin disease. It has always been a major problem in clinical treatment, mainly because its pathogenesis has not been well understood. The roles of bacterial contamination and prolonged wound inflammation were considered significant. IL-10 is a potent anti-inflammatory cytokine and plays a pivotal role in wound healing and scar formation. Here, we investigate whether IL-10 alleviates lipopolysaccharide (LPS)-induced inflammatory response and skin scarring and explore the possible mechanism of scar formation. Our results showed that the expression of TLR4 and pp65 was higher in HS and HS-derived fibroblasts (HSFs) than their counterpart normal skin (NS) and NS-derived fibroblasts (NSFs). LPS could up-regulate the expression of TLR4, pp65, Col I, Col III and α-SMA in NSFs, but IL-10 could down-regulate their expression in both HSFs and LPS-induced NSFs. Blocking IL-10 receptor (IL-10R) or the phosphorylation of STAT3, their expression was up-regulated. In addition, in vitro and in vivo models results showed that IL-10 could alleviate LPS-induced fibroblast-populated collagen lattice (FPCL) contraction and scar formation. Therefore, IL-10 alleviates LPS-induced skin scarring via IL-10R/STAT3 axis regulating TLR4/NF-κB pathway in dermal fibroblasts by reducing ECM proteins deposition and the conversion of fibroblasts to myofibroblasts. Our results indicate that IL-10 can alleviate the LPS-induced harmful effect on wound healing, reduce scar contracture, scar formation and skin fibrosis. Therefore, the down-regulation of inflammation may lead to a suitable scar outcome and be a better option for improving scar quality.


Assuntos
Fibroblastos/metabolismo , Interleucina-10/metabolismo , Lipopolissacarídeos/administração & dosagem , NF-kappa B/metabolismo , Receptores de Interleucina-10/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Animais , Biópsia , Cicatriz Hipertrófica/etiologia , Cicatriz Hipertrófica/metabolismo , Cicatriz Hipertrófica/patologia , Citocinas/metabolismo , Suscetibilidade a Doenças , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Modelos Biológicos , Coelhos , Pele/metabolismo , Pele/patologia
5.
J Cell Physiol ; 234(12): 22450-22462, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31099043

RESUMO

The severity of sepsis is associated with excessive inflammatory responses. MCP-1 induced protein (MCPIP1) could negatively regulate inflammatory responses by deubiquitinating K48 or K63 polyubiquitins of TNF receptor-associated factors. The function of MCPIP1 in negative regulation of inflammation is known, however, only the exact molecular pathway remains unknown. The aim of this study was to investigate whether and how MCPIP1 is involved in the regulation of lipopolysaccharides (LPS)-induced liver injury. Macrophages and a mouse model were induced by LPS treatment. Several in vitro assays, such as quantitative real-time PCR, immunoblotting, cell transfection, dual luciferase reporter assay, Enzyme-linked immunosorbent assay, and Hematoxylin-Eosin staining assay were used to explore the role of MCPIP1 and the interaction between MCPIP1, Sirtuin 1 (SIRT1), and microRNA-9 (miR-9). We found that the level of MCPIP1 increased and the level of SIRT1 decreased in LPS induced Kupffer cells or RAW 264.7 macrophages. Overexpression of MCPIP1 alleviated cytokine secretion and p65 nuclear translocation. Further study showed that MCPIP1 regulated p65 nuclear translocation by controlling p65 acetylation via promoting SIRT1 expression. Meanwhile, we found that miR-9 could directly regulate SIRT1 transcription by binding to the 3'-Untranslated Region of SIRT1 messenger RNA and that miR-9 was negatively regulated by MCPIP1. Importantly, overexpression of MCPIP1 in vivo could alleviate LPS-induced inflammation responses and liver injury in septic mice. These results demonstrated that MCPIP1 could alleviate inflammation responses and sepsis associated liver injury by promoting the expression of SIRT1, and miR-9 was involved in the MCPIP1-mediated regulation of SIRT1. Collectively, our results provide a possible novel signaling axis involving MCPIP1/miR-9/SIRT1 in LPS-induced septic mice.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Lipopolissacarídeos/toxicidade , MicroRNAs/metabolismo , Ribonucleases/metabolismo , Sirtuína 1/metabolismo , Animais , Citocinas/genética , Citocinas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Células de Kupffer , Macrófagos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Células RAW 264.7 , Sirtuína 1/genética
6.
Am J Pathol ; 188(7): 1693-1702, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29753790

RESUMO

Trauma or burn injuries that affect the deep dermis often produce a hypertrophic scar, which limits patients' joint movement and generates an aesthetic problem. Inflammation is believed to be one of the main pathogenic mechanisms. We found that IL-17 was increased in scar tissues from patients with hypertrophic scar compared with normal skin. Recombinant mouse IL-17 was subcutaneously injected into mice that underwent full-thickness excision surgery to investigate the role of IL-17 in scar formation. Mice stimulated with IL-17 showed aggravated fibrogenesis, delayed wound healing, and increased inflammation. In addition, macrophage infiltration was also increased. According to the results of the Transwell assay, IL-17 promoted macrophage infiltration through an indirect mechanism. After depleting macrophages with clodronate liposomes, the effect of IL-17 disappeared. Levels of monocyte chemotactic protein (MCP) 1, MCP2, and MCP3 (together referred to as MCPs) were increased by IL-17 stimulation. Bindarit (an inhibitor of MCPs) was used to verify the role of MCPs. In addition, the Ly6C-low macrophages were responsible for wound fibrogenesis in mice. In this study, we detected the increased levels of IL-17 for the first time and revealed that IL-17 induced the infiltration of a specific subtype of macrophages to aggravate fibrosis through an MCP-dependent mechanism. Thus, our results provide a better understanding of scar formation and new strategies for scar prevention.


Assuntos
Cicatriz/patologia , Fibrose/patologia , Inflamação/patologia , Interleucina-17/metabolismo , Macrófagos/imunologia , Cicatrização , Animais , Movimento Celular , Células Cultivadas , Quimiocina CCL2/metabolismo , Cicatriz/etiologia , Cicatriz/metabolismo , Fibrose/etiologia , Fibrose/metabolismo , Inflamação/etiologia , Inflamação/metabolismo , Interleucina-17/genética , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C
7.
Arch Biochem Biophys ; 671: 152-161, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31283910

RESUMO

Hypertrophic scars are dermal fibrosis diseases that protrude from the surface of the skin and irregularly extend to the periphery, seriously affecting the appearance and limb function of the patient. In this study, we found that microRNA-130a (miR-130a) was increased in hypertrophic scar tissues and derived primary fibroblasts, accompanied by up-regulation of collagen1/3 and α-SMA. Inhibition of miR-130a in hypertrophic scars fibroblasts suppressed the expression of collagen1/3 and α-SMA as well as the cell proliferation. Bioinformatics analysis combined with luciferase reporter gene assay results indicated that CYLD was a target gene of miR-130a, and the miR-130a mimic could reduce the level of CYLD. In contrast to miR-130a, the expression of CYLD was downregulated in hypertrophic scars and their derived fibroblasts. Overexpressing CYLD inhibited the expression of collagen 1/3 and α-SMA, slowed cell proliferation, and inhibited Akt activity. As expected, further study showed that the overexpression of CYLD could prevent the pro-fibroproliferative effects of miR-130a. Consistent with the in vitro results, the inhibitor of miR-130a effectively ameliorated excessive collagen deposition in bleomycin-induced skin fibrosis mouse model. Taken together, our results indicate that miR-130a promotes collagen secretion, myofibroblast transformation and cell proliferation by targeting CYLD and enhancing Akt activity. Therefore, the miR-130a/CYLD/Akt pathway may serve as a novel entry point for future skin fibrosis research.


Assuntos
Cicatriz Hipertrófica/fisiopatologia , Enzima Desubiquitinante CYLD/metabolismo , MicroRNAs/metabolismo , Actinas/metabolismo , Animais , Bleomicina , Ciclo Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Cicatriz Hipertrófica/induzido quimicamente , Colágeno Tipo I/metabolismo , Colágeno Tipo III/metabolismo , Derme/patologia , Regulação para Baixo , Fibroblastos/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Proteínas Proto-Oncogênicas c-akt/metabolismo , Regulação para Cima
8.
Arch Biochem Biophys ; 668: 1-8, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-31071300

RESUMO

Systemic inflammatory response syndrome (SIRS) is associated with excessive inflammatory response, however, the pathophysiology of inflammation is poorly understood. The retinoid-related orphan receptor α (RORα) is a key inflammatory regulator, but the mechanisms underlying its role remain unclear. The aim of this study was to investigate how RORα was involved in the regulation of inflammatory response. Here we put forward a hypothesis that RORα might negatively regulate inflammatory response by controlling silent information regulator Sirtuin 1 (SIRT1) expression. Stimulation of macrophages in vitro with LPS and LPS administration in vivo were used to explore the function of RORα and the relationship between RORα and SIRT1. We found that the level of RORα was suppressed in macrophages stimulated with LPS and overexpression or knockdown of RORα by transfection with lentivirus or siRNAs significantly decreased or increased, respectively, the pro-inflammatory cytokines IL-1ß, TNF, IL-6 and MCP-1. Importantly, overexpression of RORα suppressed inflammation and alleviated LPS-induced organ injury in vivo. Further study showed that RORα could regulate SIRT1 expression and, consequently, affect deacetyation and nuclear translocation of nuclear factor-kappa B (NF-κB) subunit p65. Moreover, the activation of SIRT1 by its specific agonist, SR1720, could reduce the expression of proinflammatory cytokines in RORα knockdown macrophages stimulated with LPS. In conclusion, we demonstrated that RORα could alleviate LPS-induced inflammation and organ injury both in vivo and in vitro by blocking NF-κB p65 nuclear translocation and restricting acetylation of NF-κB p65 at lysine 310 via the regulation of SIRT1 expression. Targeting RORα might be a promising therapeutic strategy to regulate inflammatory disorders.


Assuntos
Inflamação/fisiopatologia , Macrófagos/metabolismo , Subunidade p50 de NF-kappa B/metabolismo , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Transdução de Sinais/fisiologia , Sirtuína 1/metabolismo , Acetilação , Animais , Citocinas/metabolismo , Inflamação/induzido quimicamente , Lipopolissacarídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células RAW 264.7 , Fator de Transcrição RelA/metabolismo
9.
Arch Biochem Biophys ; 661: 117-124, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30458128

RESUMO

OBJECTIVE: Chronic wounds are a devastating complication of diabetes and can lead to amputations or even death. Current medical therapies are insufficient to accelerate its repair. The objective of this study was to explore the role of Sirtuin1 (SIRT1) in diabetic wounds. METHODS AND MATERIALS: Perilesional skin tissue samples from diabetic ulcers and normoglycemic trauma wounds were used to detect SIRT1 expression and oxidative stress levels. In a diabetic mouse model, SIRT1 was pharmacologically activated to attenuate angiogenesis and accelerate wound closure. Finally, in vitro experiments were performed to elucidate some of the mechanisms by which SIRT1 activation promotes angiogenesis in diabetic wound healing. RESULTS: We found that skin tissue from diabetes patients showed lower expression of SIRT1 and severe oxidative stress. Decreased SIRT1 expression was observed in skin tissue from streptozocin (STZ)-induced diabetic mice and was associated with impaired wound healing. In addition, the wounds of STZ-induced diabetic mice treated with SRT1720 (a specific SIRT1 activator) demonstrated locally improved wound healing and angiogenesis. In the in vitro experiment, similar results were observed. Under hyperglycemia conditions, human umbilical vein endothelial cells (HUVECs) showed lower expression of SIRT1 and higher levels of reactive oxygen species (ROS) production. Furthermore, the migration, proliferation and in vitro tube formation ability of HUVECs were impaired under hyperglycemia conditions, and SRT1720 treatment rescued these impairments and decreased ROS production in HUVECs. CONCLUSIONS: This study provides experimental evidence that SIRT1 activation could improve angiogenesis in wounds in vitro and in vivo and that sirtuin1 activation accelerates wound healing in diabetic mice by promoting angiogenesis. These positive therapeutic effects may be mediated by protecting vascular endothelial cells from oxidative stress injury. This study suggested that SIRT1 may serve as a potentially important and potent therapeutic target for treating diabetic ulcers.


Assuntos
Angiopatias Diabéticas/enzimologia , Células Endoteliais da Veia Umbilical Humana/enzimologia , Neovascularização Patológica/enzimologia , Estresse Oxidativo , Sirtuína 1/metabolismo , Ferimentos e Lesões/enzimologia , Animais , Angiopatias Diabéticas/patologia , Feminino , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Masculino , Camundongos , Neovascularização Patológica/patologia , Ferimentos e Lesões/patologia
10.
Exp Cell Res ; 370(2): 333-342, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29964051

RESUMO

INTRODUCTION: Adipose tissue-derived stem cells (ADSCs) have been shown to enhance wound healing via their paracrine function. Exosomes, as one of the most important paracrine factors, play an essential role in this process. However, the concrete mechanisms that underlie this effect are poorly understood. In this study, we aim to explore the potential roles and molecular mechanisms of exosomes derived from ADSCs in cutaneous wound healing. METHODS: Normal human skin fibroblasts and ADSCs were isolated from patient skin and adipose tissues. ADSCs were characterized by using flow cytometric analysis and adipogenic and osteogenic differentiation assays. Exosomes were purified from human ADSCs by differential ultracentrifugation and identified by electron microscopy, nanoparticle tracking, fluorescence confocal microscopy and western blotting. Fibroblasts were treated with different concentrations of exosomes, and the synthesis of collagen was analyzed by western blotting; the levels of growth factors were analyzed by real-time quantitative PCR (RT-PCR) and ELISA; and the proliferation and migration abilities of fibroblasts were analyzed by real-time cell analysis, CCK-8 assays and scratch assays. A mouse model with a full-thickness incision wound was used to evaluate the effect of ADSC-derived exosomes on wound healing. The level of p-Akt/Akt was analyzed by western blotting. Ly294002, a phosphatidylinositol 3-kinases (PI3K) inhibitor, was used to identify the underlying mechanisms by which ADSC-derived exosomes promote wound healing. RESULTS: ADSC-derived exosomes were taken up by the fibroblasts, which showed significant, dose-dependent increases in cell proliferation and migration compared to the behavior of cells without exosome treatment. More importantly, both the mRNA and protein levels of type I collagen (Col 1), type III collagen (Col 3), MMP1, bFGF, and TGF-ß1 were increased in fibroblasts after stimulation with exosomes. Furthermore, exosomes significantly accelerated wound healing in vivo and increased the level of p-Akt/Akt in vitro. However, Ly294002 alleviated these exosome-induced changes, suggesting that exosomes from ADSCs could promote and optimize collagen deposition in vitro and in vivo and further promote wound healing via the PI3K/Akt signaling pathway. CONCLUSIONS: This study demonstrates that ADSC-derived exosomes can promote fibroblast proliferation and migration and optimize collagen deposition via the PI3K/Akt signaling pathway to further accelerate wound healing. Our results suggest that ADSCs likely facilitate wound healing via the release of exosomes, and the PI3K/Akt pathway may play a role in this process. Our data also suggest that the clinical application of ADSC-derived exosomes may shed new light on the use of cell-free therapy to accelerate full-thickness skin wound healing and attenuate scar formation.


Assuntos
Tecido Adiposo/citologia , Exossomos/metabolismo , Pele/citologia , Células-Tronco/citologia , Cicatrização/efeitos dos fármacos , Adolescente , Adulto , Animais , Diferenciação Celular/fisiologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Criança , Pré-Escolar , Fibroblastos/metabolismo , Humanos , Camundongos , Osteogênese/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pele/metabolismo , Adulto Jovem
11.
Biochem Biophys Res Commun ; 496(2): 436-442, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29288671

RESUMO

Allogeneic skin transplantation is the life-saving therapy for multiple diseases, including extensive burn, large-scale trauma and certain post-surgical complications. However, acute rejection impedes clinical application of allogeneic skin transplantation. Although a lot of novel immunosuppressant drugs have been developed, there is still great need for ideal therapy with less complication and more therapeutic effects. Here, we found interferon gamma (IFN-γ) as an immunomodulatory cytokine prolonged the survival time of allografts from (8.50 ±â€¯1.517) days to (14.83 ±â€¯2.714) days at best. Indoleamine-2, 3-dioxygenase (IDO) has been proposed to play key roles in induction of immune tolerance. Using in vitro tissue culture and primary keratinocytes and fibroblasts, we investigated the regulatory effects of IFN-γ on the IDO expression. IFN-γ upregulated IDO expression through STAT3 phosphorylation and this upregulation was reduced by abolition of STAT3 phosphorylation through a STAT3 phosphorylation inhibitor. Interestingly, IFN-γ induced IDO expression predominately in epidermis rather than dermis. In consistent with these results, IFN-γ significantly triggered IDO expression in keratinocytes but not fibroblasts. Taken together, this suggests that IFN-γ might be a potential immunomodulatory drug in acute rejection and keratinocytes in epidermis may play a main role in immune tolerance after allogeneic skin transplantation.


Assuntos
Rejeição de Enxerto/prevenção & controle , Sobrevivência de Enxerto , Fatores Imunológicos/farmacologia , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Interferon gama/farmacologia , Fator de Transcrição STAT3/genética , Transplante de Pele , Doença Aguda , Animais , Derme/citologia , Derme/efeitos dos fármacos , Derme/imunologia , Células Epidérmicas , Epiderme/efeitos dos fármacos , Epiderme/imunologia , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/imunologia , Regulação da Expressão Gênica , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/patologia , Tolerância Imunológica/efeitos dos fármacos , Indolamina-Pirrol 2,3,-Dioxigenase/imunologia , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Especificidade de Órgãos , Fosforilação , Fator de Transcrição STAT3/imunologia , Transplante Homólogo
12.
Biochim Biophys Acta Mol Basis Dis ; 1864(3): 784-792, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29277325

RESUMO

Molecular mechanisms for macrophage immune responses modulated by SIRT1 during sepsis remain unclear. Here, we show that SIRT1 expression is down-regulated in macrophages from mouse sepsis model or LPS stimulation. SIRT1 expression in macrophages correlates with low levels of a long noncoding RNA (lncRNA)-NONMMUT003701 [named as lncRNA-CCL2]. SIRT1 inhibits lncRNA-CCL2 expression via sustaining a repressive chromatin state in the lncRNA-CCL2 locus. The inflammation cytokines expression is downregulated by knockdown of lncRNA-CCL2. Such inhibition can be reversed partly by decreased SIRT1 activity. Thus, this work uncovers previously unidentified mechanisms in which SIRT1 associates with lncRNA and lncRNA regulates macrophage inflammatory response.


Assuntos
Inflamação/genética , Macrófagos/efeitos dos fármacos , RNA Longo não Codificante/fisiologia , Sepse/patologia , Sirtuína 1/fisiologia , Animais , Células Cultivadas , Regulação da Expressão Gênica , Inflamação/patologia , Macrófagos/imunologia , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Sepse/complicações , Sepse/genética , Sepse/imunologia , Transdução de Sinais/genética , Sirtuína 1/genética , Síndrome de Resposta Inflamatória Sistêmica/genética , Síndrome de Resposta Inflamatória Sistêmica/imunologia , Síndrome de Resposta Inflamatória Sistêmica/patologia
13.
Immunology ; 148(3): 253-65, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26878424

RESUMO

Sertoli cells (SCs) possess inherent immunosuppressive properties and are major contributors to the immunoprivileged status of mammalian testis. SCs have been reported to inhibit the activation of B cells, T cells and natural killer cells but not dendritic cells (DCs). Herein, we present evidence that co-culture with SCs results in a persistent state of DC immaturity characterized by down-regulation of the surface molecules I-A/E, CD80, CD83, CD86, CCR7 and CD11c, as well as reduced production of pro-inflammatory cytokines. SC-conditioned DCs (SC-DCs) displayed low immunogenicity and enhanced immunoregulatory functions, including the inhibition of T-cell proliferation and the promotion of Foxp3(+) regulatory T-cell development. Mechanistically, the activation of p38, extracellular signal-regulated kinase 1/2, and signal transducer and activator of transcription 3 was suppressed in SC-DCs. More importantly, we demonstrate that galectin-1 secreted by SCs plays a pivotal role in the differentiation of functionally tolerogenic SC-DCs. These findings further support the role of SCs in maintaining the immunoprivileged environment of the testis and provide a novel approach to derive tolerogenic DCs, which may lead to alternative therapeutic strategies for the treatment of immunopathogenic diseases.


Assuntos
Células Dendríticas/imunologia , Galectina 1/metabolismo , Tolerância Imunológica , Células de Sertoli/imunologia , Linfócitos T Reguladores/imunologia , Animais , Diferenciação Celular , Células Cultivadas , Citocinas/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Galectina 1/imunologia , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
14.
Mediators Inflamm ; 2015: 720457, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26576075

RESUMO

The NLRP3 inflammasome is necessary for initiating acute sterile inflammation. However, its role in the pathogenesis of burn-induced acute lung injury (ALI) is unknown. This study aimed to determine the role of the NLRP3 inflammasome and the signaling pathways involved in burn-induced ALI. We observed that the rat lungs exhibited enhanced inflammasome activity after burn, as evidenced by increased levels of NLRP3 expression and Caspase-1 activity and augmented inflammatory cytokines. Inhibition of NLRP3 inflammasome by BAY11-7082 attenuated burn-induced ALI, as demonstrated by the concomitant remission of histopathologic changes and the reduction of myeloperoxidase (MPO) activity, inflammatory cytokines in rat lung tissue, and protein concentrations in the bronchoalveolar lavage fluid (BALF). In the in vitro experiments, we used AMs (alveolar macrophages) challenged with burn serum to mimic the postburn microenvironment and noted that the serum significantly upregulated NLRP3 inflammasome signaling and reactive oxygen species (ROS) production. The use of ROS scavenger N-acetylcysteine (NAC) partially reversed NLRP3 inflammasome activity in cells exposed to burn serum. These results indicate that the NLRP3 inflammasome plays an essential role in burn-induced ALI and that burn-induced NLRP3 inflammasome activity is a partly ROS-dependent process. Targeting this axis may represent a promising therapeutic strategy for the treatment of burn-induced ALI.


Assuntos
Lesão Pulmonar Aguda/etiologia , Queimaduras/complicações , Proteínas de Transporte/fisiologia , Inflamassomos/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Lesão Pulmonar Aguda/prevenção & controle , Animais , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/genética , Caspase 1/genética , Caspase 1/fisiologia , Células Cultivadas , Interleucina-18/análise , Interleucina-18/fisiologia , Interleucina-1beta/análise , Interleucina-1beta/fisiologia , Masculino , Proteína 3 que Contém Domínio de Pirina da Família NLR , Nitrilas/farmacologia , Ratos , Ratos Sprague-Dawley , Sulfonas/farmacologia
15.
Cell Immunol ; 287(2): 129-35, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24491913

RESUMO

The essential roles of Notch pathway in angiogenesis have been reported for years. However, how Notch pathway plays its role in regulating endothelial cells remains largely unknown. In this study we found that blockade of Notch signaling with a γ-secretase inhibitor increased reactive oxygen species (ROS) in primary human umbilical vein endothelial cells (HUVECs) under both normaxic and ischemia/reperfusion (I/R) conditions. Abruption of ROS generation with ROS scavengers or specific inhibitors of ROS production in HUVECs abolished Notch blockade-induced HUVEC proliferation, migration and adhesion, suggesting that the regulation of Notch pathway on endothelial cell behavior is at least partially dependent on its down-regulation of ROS level. We further showed that the enhanced generation of ROS after blocking Notch signal was accompanied by augmented expression of Nox4, which led to increased phosphorylation of VEGFR2 and ERK in HUVECs. In summary, our results have shown that Notch signaling regulates ROS generation by suppressing Nox4, and further modulates endothelial cell proliferation, migration and adhesion.


Assuntos
Células Endoteliais da Veia Umbilical Humana/metabolismo , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores Notch/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/enzimologia , Humanos , NADPH Oxidase 4 , NADPH Oxidases/genética , Neovascularização Fisiológica , Oligopeptídeos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Receptores Notch/genética , Receptores Notch/metabolismo , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima
16.
Wound Repair Regen ; 22(1): 77-84, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24393155

RESUMO

Intensive insulin therapy during critical illness protects the endothelium and thereby prevents organ failure. This study tested the hypothesis that insulin directly affects the attenuation of burn injury-induced damage to pulmonary endothelial tight junction and investigated the underlying mechanisms. Sprague Dawley rats with severe burn injury were randomized to treatment with insulin dissolved in normal saline (maintenance of blood glucose at a level between 5.0 and 7.0 mmol/L) or normal saline alone (in vivo treatment). Pulmonary damage was evaluated. Rat pulmonary microvascular endothelial cells were treated with 20% burn serum or 20% burn serum + insulin (in vitro treatment). Selected cultures were pretreated with phosphatidylinositol 3-kinase/protein kinase B (AKT) inhibitor (LY294002). Permeability was assessed by migration of bovine serum albumin across cell monolayers. Cells were stained with rhodamine phalloidin and were examined. Cell extracts were obtained to assess zonula occludens-1, occludin, and phosphorylated AKT levels by immunoblotting. Treatment with insulin attenuated the pulmonary edema, hemorrhage, and inflammatory cell infiltration of rats with severe burn injury. Burn serum significantly enhanced monolayer permeability to albumin, whereas treatment with insulin (10(-7 ) mol/L) limited this effect. Meanwhile, insulin (10(-7 ) mol/L) reduced burn serum-induced F-actin stress fiber formation and decreased zonula occludens-1 expression. LY294002 decreased cytoplasmic AKT phosphorylation and inhibited the protection effects of insulin. Through the phosphatidylinositol 3-kinase/AKT pathway, insulin independent of glucose toxicity can attenuate increased pulmonary endothelial permeability induced by burn injury. The effect is attributed to the attenuation of the architectural disruption of protein components of the endothelial tight junction. This result is useful in inhibiting multiple organ failure after burn injury.


Assuntos
Actinas/metabolismo , Queimaduras/tratamento farmacológico , Cromonas/farmacologia , Endotélio Vascular/patologia , Inibidores Enzimáticos/farmacologia , Insulina/farmacologia , Morfolinas/farmacologia , Proteína Oncogênica v-akt/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Mucosa Respiratória/patologia , Junções Íntimas/patologia , Cicatrização , Proteína da Zônula de Oclusão-1/metabolismo , Actinas/biossíntese , Animais , Glicemia/metabolismo , Queimaduras/metabolismo , Queimaduras/patologia , Queimaduras/fisiopatologia , Permeabilidade da Membrana Celular , Células Cultivadas , Células Endoteliais/metabolismo , Endotélio Vascular/efeitos dos fármacos , Ativação Enzimática , Hemorragia/prevenção & controle , Insuficiência de Múltiplos Órgãos/prevenção & controle , Proteína Oncogênica v-akt/antagonistas & inibidores , Fosforilação , Edema Pulmonar/prevenção & controle , Ratos , Ratos Sprague-Dawley , Mucosa Respiratória/efeitos dos fármacos , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Proteína da Zônula de Oclusão-1/biossíntese
17.
J Surg Res ; 184(2): 832-7, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23731680

RESUMO

BACKGROUND: Ischemia-reperfusion injury (IRI) of the intestine is associated with high morbidity and mortality in surgical and trauma patients. T cells participate in the pathogenesis of intestinal IRI, and T-cell depletion has been shown to inhibit inflammatory responses and diminish intestinal damage. However, the mechanism by which T cells contribute to intestinal IRI is not completely understood. Regulatory T cells (Tregs) are a specific subset of T cells that suppress immune responses and protect against tissue injuries. We hypothesized that Tregs might be involved in intestinal IRI. MATERIALS AND METHODS: We subjected C57/Bl6 mice to 30 min of ischemia by clamping the superior mesenteric artery followed by reperfusion. Animals were pretreated with the anti-CD25 monoclonal antibody or adoptive transfer of Tregs before induction of IRI. The number of inflammatory cells, the level of inflammatory factors, and intestinal permeability were assessed. RESULTS: Partial depletion of Tregs with an anti-CD25 monoclonal antibody potentiated intestinal permeability induced by IRI. The Treg-depleted mice showed more neutrophils and CD4(+) T cells. In addition, depletion of Tregs led to enhanced secretion of tumor necrosis factor-α, interferon-gamma, and interleukin (IL)-4 and reduced levels of IL-10. Furthermore, we performed adoptive transfer of Tregs and found that transfer of Tregs significantly inhibited the ischemia-reperfusion-induced increase in intestinal permeability. CONCLUSIONS: Our study indicated that Tregs participate in intestinal inflammatory responses induced by IRI and that targeting Tregs could be a novel therapeutic approach to intestinal IRI.


Assuntos
Inflamação/patologia , Inflamação/fisiopatologia , Intestinos/irrigação sanguínea , Intestinos/patologia , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/fisiopatologia , Linfócitos T Reguladores/patologia , Transferência Adotiva , Animais , Anticorpos Monoclonais/farmacologia , Contagem de Células , Interferon gama/metabolismo , Interleucina-10/metabolismo , Subunidade alfa de Receptor de Interleucina-2/efeitos dos fármacos , Subunidade alfa de Receptor de Interleucina-2/imunologia , Interleucina-4/metabolismo , Intestinos/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Traumatismo por Reperfusão/metabolismo , Linfócitos T Reguladores/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
18.
J Surg Res ; 185(2): 797-804, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23910884

RESUMO

BACKGROUND: Severe burns initiate an inflammatory response characterized by the upregulation of proinflammatory cytokine, which contributes to multiple organ injury. Na(+)/H(+) exchanger 1 (NHE1) plays a significant role in several inflammatory processes. This study was designed to investigate the role of NHE1 in burn-induced inflammation and multiple organ injury. MATERIALS AND METHODS: Rats were subjected to a 30% total body surface area full-thickness burn. Cariporide was used to assess the function of NHE1 in burn-induced multiple organ injury by biochemical parameters, histologic changes, and inflammatory cytokine production. RESULTS: We found that NHE1 expression was significantly increased after burn injury. Inhibition of NHE1 by cariporide attenuated burn-induced edema and tissue injury in heart, lung, kidney, and small intestine. Cariporide also inhibited plasma levels of tumor necrosis factor α, interleukin 6, and myeloperoxidase activity. CONCLUSIONS: These results indicate that NHE1 inhibition prevents burn-induced multiple organ injury. The salutary effects afforded by NHE1 inhibition, at least in part, are mediated by attenuating systemic inflammatory response.


Assuntos
Queimaduras/tratamento farmacológico , Guanidinas/farmacologia , Insuficiência de Múltiplos Órgãos/tratamento farmacológico , Trocadores de Sódio-Hidrogênio/antagonistas & inibidores , Sulfonas/farmacologia , Animais , Antiarrítmicos/farmacologia , Queimaduras/complicações , Modelos Animais de Doenças , Expressão Gênica/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Intestinos/fisiologia , Rim/efeitos dos fármacos , Rim/fisiologia , Pulmão/efeitos dos fármacos , Pulmão/fisiologia , Masculino , Insuficiência de Múltiplos Órgãos/etiologia , Contração Miocárdica/efeitos dos fármacos , Contração Miocárdica/fisiologia , Ratos , Ratos Sprague-Dawley , Trocador 1 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio/genética
19.
Bioact Mater ; 26: 323-336, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36950152

RESUMO

Chronic diabetic wounds remain a globally recognized clinical challenge. They occur due to high concentrations of reactive oxygen species and vascular function disorders. A promising strategy for diabetic wound healing is the delivery of exosomes, comprising bioactive dressings. Metformin activates the vascular endothelial growth factor pathway, thereby improving angiogenesis in hyperglycemic states. However, multifunctional hydrogels loaded with drugs and bioactive substances synergistically promote wound repair has been rarely reported, and the mechanism of their combinatorial effect of exosome and metformin in wound healing remains unclear. Here, we engineered dual-loaded hydrogels possessing tissue adhesive, antioxidant, self-healing and electrical conductivity properties, wherein 4-armed SH-PEG cross-links with Ag+, which minimizes damage to the loaded goods and investigated their mechanism of promotion effect for wound repair. Multiwalled carbon nanotubes exhibiting good conductivity were also incorporated into the hydrogels to generate hydrogen bonds with the thiol group, creating a stable three-dimensional structure for exosome and metformin loading. The diabetic wound model of the present study suggests that the PEG/Ag/CNT-M + E hydrogel promotes wound healing by triggering cell proliferation and angiogenesis and relieving peritraumatic inflammation and vascular injury. The mechanism of the dual-loaded hydrogel involves reducing the level of reactive oxygen species by interfering with mitochondrial fission, thereby protecting F-actin homeostasis and alleviating microvascular dysfunction. Hence, we propose a drug-bioactive substance combination therapy and provide a potential mechanism for developing vascular function-associated strategies for treating chronic diabetic wounds.

20.
Redox Biol ; 62: 102655, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36913799

RESUMO

BACKGROUND: Sepsis is a fatal disease with a high rate of morbidity and mortality, during which acute lung injury is the earliest and most serious complication. Injury of pulmonary microvascular endothelial cells (PMVECs) induced by excessive inflammation plays an important role in sepsis acute lung injury. This study is meant to explore the protective effect and mechanism of ADSCs exosomes on excessive inflammation PMVECs injury. RESULTS: We successfully isolated ADSCs exosomes, the characteristic of which were confirmed. ADSCs exosomes reduced excessive inflammatory response induced ROS accumulation and cell injury in PMVECs. Besides, ADSCs exosomes inhibited excessive inflammatory response induced ferroptosis while upregulated expression of GPX4 in PMVECs. And further GPX4 inhibition experiments revealed that ADSCs exosomes alleviated inflammatory response induced ferroptosis via upregulating GPX4. Meanwhile, ADSCs exosomes could increase the expression and nucleus translocation of Nrf2, while decrease the expression of Keap1. miRNA analysis and further inhibition experiments verified that specific delivery of miR-125b-5p by ADSCs exosomes inhibited Keap1 and alleviated ferroptosis. In CLP induced sepsis model, ADSCs exosomes could relieve the lung tissue injury and reduced the death rate. Besides, ADSCs exosomes alleviated oxidative stress injury and ferroptosis of lung tissue, while remarkably increase expression of Nrf2 and GPX4. CONCLUSION: Collectively, we illustrated a novel potentially therapeutic mechanism that miR-125b-5p in ADSCs exosomes could alleviate the inflammation induced PMVECs ferroptosis in sepsis induced acute lung injury via regulating Keap1/Nrf2/GPX4 expression, hence improve the acute lung injury in sepsis.


Assuntos
Lesão Pulmonar Aguda , Exossomos , Ferroptose , MicroRNAs , Sepse , Humanos , Lesão Pulmonar Aguda/genética , Células Endoteliais/metabolismo , Exossomos/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Pulmão/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Sepse/metabolismo , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA