Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Front Microbiol ; 15: 1384991, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38800755

RESUMO

Introduction: Rapid identification of infected individuals through viral RNA or antigen detection followed by effective personal isolation is usually the most effective way to prevent the spread of a newly emerging virus. Large-scale detection involves mass specimen collection and transportation. For biosafety reasons, denaturing viral transport medium has been extensively used during the SARS-CoV-2 pandemic. However, the high concentrations of guanidinium isothiocyanate (GITC) in such media have raised issues around sufficient GITC supply and laboratory safety. Moreover, there is a lack of denaturing transport media compatible with SARS-CoV-2 RNA and antigen detection. Methods: Here, we tested whether supplementing media containing low concentrations of GITC with ammonium sulfate (AS) would affect the throat-swab detection of SARS-CoV-2 or a viral inactivation assay targeting coronavirus and other enveloped and non-enveloped viruses. The effect of adding AS to the media on RNA stability and its compatibility with SARS-CoV-2 antigen detection were also tested. Results and discussion: We found that adding AS to the denaturing transport media reduced the need for high levels of GITC, improved SARS-COV-2 RNA detection without compromising virus inactivation, and enabled the denaturing transport media compatible with SARS-CoV-2 antigen detection.

2.
Clin Cancer Res ; 12(9): 2834-40, 2006 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-16675578

RESUMO

PURPOSE: Microtubules play a critical role in many cellular functions, including cell division and mitosis. ABT-751 is a novel sulfonamide antimitotic that binds to the colchicine site on beta-tubulin that leads to a block in the cell cycle at the G2M phase, resulting in cellular apoptosis. ABT-751 was investigated in this phase 1 trial designed to assess its maximum tolerated dose (MTD), dose-limiting toxicity (DLT), tolerability, and pharmacokinetics. EXPERIMENTAL DESIGN: ABT-751 was administered on a daily (q.d.) or twice daily (b.i.d.) oral schedule for 7 days every 3 weeks to 39 patients with refractory solid tumors. Toxicity was monitored weekly. Plasma and urine ABT-751 and metabolite pharmacokinetics were determined. RESULTS: The MTD for the q.d. schedule was 250 mg/d. DLTs during cycle 1 were abdominal pain, constipation, and fatigue. The MTD on the b.i.d. schedule was 150 mg. Cycle 1 of therapy with the 175 mg b.i.d. schedule was tolerated without DLT. However, six of seven patients reported grade 3 toxicity (ileus, constipation, abdominal pain, or fatigue), which occurred in cycle 2 or 3. ABT-751 was absorbed after oral administration with an overall mean T(max) of about 2 hours. The pharmacokinetics of ABT-751 were dose-proportional and time-independent. There was minimal accumulation of ABT-751 after multiple q.d. and b.i.d. doses. Efficacious concentrations, as determined from preclinical models (0.5-1.5 microg/mL), were achieved in all subjects. ABT-751 metabolism occurred primarily by glucuronidation and sulfation. No complete or partial tumor responses were noted, but one patient had a minor response, and four patients had stable disease lasting at least 6 months. CONCLUSIONS: The MTD and recommended phase 2 doses for ABT-751 were 250 mg q.d. and 150 mg b.i.d. on a 7-day schedule given every 3 weeks, due to subsequent cycle toxicities at 175 mg b.i.d. dosing. Toxicities were abdominal pain, constipation, and neuropathy.


Assuntos
Neoplasias/sangue , Sulfonamidas/farmacocinética , Sulfonamidas/toxicidade , Administração Oral , Adulto , Idoso , Disponibilidade Biológica , Divisão Celular/efeitos dos fármacos , Esquema de Medicação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias/urina , Segurança , Sulfonamidas/uso terapêutico
3.
Antimicrob Agents Chemother ; 49(5): 1890-7, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15855511

RESUMO

The novel ribosome inhibitors (NRIs) are a broad-spectrum naphthyridine class that selectively inhibits bacterial protein synthesis (P. J. Dandliker et al., Antimicrob. Agents Chemother. 47:3831-3839, 2003). Footprinting experiments, using a range of NRIs and chemical modification agents on Escherichia coli ribosomes, revealed no evidence for direct protection of rRNA. In the presence of tRNA, however, we found that NRIs enhanced the known ribosomal footprinting pattern of tRNA in a dose-dependent manner. The most prominent increase in protection, at A1492/3 and A1413 in helix-44 of 16S RNA, strictly required the presence of tRNA and poly(U), and the effect was correlated with the potency of the inhibitor. Radioligand binding studies with inhibitor [(3)H]A-424902 showed that the compound binds to tRNA, either in its charged or uncharged form. The dissociation constant for [(3)H]A-424902 binding to Phe-tRNA(Phe) was determined to be 1.8 microM, near its translation inhibition potency of 1.6 muM in a cell-free S. pneumoniae extract assay. The compound did not change the binding of radiolabeled tRNA to the 30S ribosomal subunit. Taken together, these results imply that the NRIs exert their effects on protein synthesis by structurally perturbing the tRNA/30S complex at the decoding site.


Assuntos
Naftiridinas/farmacologia , RNA Ribossômico 16S/efeitos dos fármacos , RNA de Transferência/biossíntese , Ribossomos/efeitos dos fármacos , Autorradiografia , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Primers do DNA , Regulação Bacteriana da Expressão Gênica , Modelos Moleculares , Biossíntese de Proteínas , Pegadas de Proteínas , RNA de Transferência/genética , Ensaio Radioligante , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/genética
4.
Antimicrob Agents Chemother ; 47(10): 3260-9, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14506039

RESUMO

ABT-492 demonstrated potent antibacterial activity against most quinolone-susceptible pathogens. The rank order of potency was ABT-492 > trovafloxacin > levofloxacin > ciprofloxacin against quinolone-susceptible staphylococci, streptococci, and enterococci. ABT-492 had activity comparable to those of trovafloxacin, levofloxacin, and ciprofloxacin against seven species of quinolone-susceptible members of the family Enterobacteriaceae, although it was less active than the comparators against Citrobacter freundii and Serratia marcescens. The activity of ABT-492 was greater than those of the comparators against fastidious gram-negative species, including Haemophilus influenzae, Moraxella catarrhalis, Neisseria gonorrhoeae, and Legionella spp. and against Pseudomonas aeruginosa and Helicobacter pylori. ABT-492 was as active as trovafloxacin against Chlamydia trachomatis, indicating good intracellular penetration and antibacterial activity. In particular, ABT-492 was more active than trovafloxacin and levofloxacin against multidrug-resistant Streptococcus pneumoniae, including strains resistant to penicillin and macrolides, and H. influenzae, including beta-lactam-resistant strains. It retained greater in vitro activity than the comparators against S. pneumoniae and H. influenzae strains resistant to other quinolones due to amino acid alterations in the quinolone resistance-determining regions of the target topoisomerases. ABT-492 was a potent inhibitor of bacterial topoisomerases, and unlike the comparators, DNA gyrase and topoisomerase IV from either Staphylococcus aureus or Escherichia coli were almost equally sensitive to ABT-492. The profile of ABT-492 suggested that it may be a useful agent for the treatment of community-acquired respiratory tract infections, as well as infections of the urinary tract, bloodstream, and skin and skin structure and nosocomial lung infections.


Assuntos
Antibacterianos/farmacologia , Quinolonas/farmacologia , Animais , Antibacterianos/química , Antibacterianos/metabolismo , Bactérias Anaeróbias/efeitos dos fármacos , Proteínas Sanguíneas/metabolismo , Ciprofloxacina/metabolismo , Ciprofloxacina/farmacologia , DNA Topoisomerases Tipo II/metabolismo , Farmacorresistência Bacteriana , Fluoroquinolonas/metabolismo , Fluoroquinolonas/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Humanos , Levofloxacino , Testes de Sensibilidade Microbiana/métodos , Naftiridinas/metabolismo , Naftiridinas/farmacologia , Ofloxacino/metabolismo , Ofloxacino/farmacologia , Ligação Proteica , Quinolonas/química , Quinolonas/metabolismo , Ratos
5.
Bioorg Med Chem Lett ; 14(1): 267-70, 2004 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-14684340

RESUMO

A novel class of MurF inhibitors was discovered and structure-activity relationship studies have led to several potent compounds with IC(50)=22 approximately 70 nM. Unfortunately, none of these potent MurF inhibitors exhibited significant antibacterial activity even in the presence of bacterial cell permeabilizers.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Peptídeo Sintases/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Peptídeo Sintases/metabolismo , Peptidoglicano/biossíntese , Relação Estrutura-Atividade
6.
Bioorg Med Chem Lett ; 14(12): 3299-302, 2004 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-15149694

RESUMO

Structure-activity relationships for a recently discovered novel ribosome inhibitor (NRI) class of antibacterials were investigated. Preliminary efforts to optimize protein synthesis inhibitory activity of the series through modification of positions 3 and 4 of the naphthyridone lead template resulted in the identification of several biochemically potent analogues. A lack of corresponding whole cell antibacterial activity is thought to be a consequence of poor cellular penetration as evidenced by the enhancement of activity observed for a lead analogue tested in the presence of a cell permeabilizing agent.


Assuntos
Antibacterianos/química , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/biossíntese , Naftiridinas/química , Inibidores da Síntese de Proteínas/química , Antibacterianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/crescimento & desenvolvimento , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Naftiridinas/farmacologia , Inibidores da Síntese de Proteínas/farmacologia , Relação Estrutura-Atividade
7.
Antimicrob Agents Chemother ; 47(12): 3831-9, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14638491

RESUMO

We report the discovery and characterization of a novel ribosome inhibitor (NRI) class that exhibits selective and broad-spectrum antibacterial activity. Compounds in this class inhibit growth of many gram-positive and gram-negative bacteria, including the common respiratory pathogens Streptococcus pneumoniae, Haemophilus influenzae, Staphylococcus aureus, and Moraxella catarrhalis, and are nontoxic to human cell lines. The first NRI was discovered in a high-throughput screen designed to identify inhibitors of cell-free translation in extracts from S. pneumoniae. The chemical structure of the NRI class is related to antibacterial quinolones, but, interestingly, the differences in structure are sufficient to completely alter the biochemical and intracellular mechanisms of action. Expression array studies and analysis of NRI-resistant mutants confirm this difference in intracellular mechanism and provide evidence that the NRIs inhibit bacterial protein synthesis by inhibiting ribosomes. Furthermore, compounds in the NRI series appear to inhibit bacterial ribosomes by a new mechanism, because NRI-resistant strains are not cross-resistant to other ribosome inhibitors, such as macrolides, chloramphenicol, tetracycline, aminoglycosides, or oxazolidinones. The NRIs are a promising new antibacterial class with activity against all major drug-resistant respiratory pathogens.


Assuntos
Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Ribossomos/efeitos dos fármacos , Aminoacil-tRNA Sintetases/genética , Animais , Bacillus subtilis/efeitos dos fármacos , DNA Girase/genética , DNA Girase/metabolismo , Desenho de Fármacos , Farmacorresistência Bacteriana , Escherichia coli/enzimologia , Escherichia coli/genética , Células Eucarióticas/metabolismo , Genes Reporter/genética , Indicadores e Reagentes , Luciferases/genética , Testes de Sensibilidade Microbiana , Plasmídeos/genética , Coelhos , Proteínas Ribossômicas/efeitos dos fármacos , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/genética , Fatores de Transcrição/genética , Transcrição Gênica , beta-Galactosidase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA