Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Adv Funct Mater ; 30(37)2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-33841061

RESUMO

Micron-sized hydrogels, termed microgels, are emerging as multifunctional platforms that can recapitulate tissue heterogeneity in engineered cell microenvironments. The microgels can function as either individual cell culture units or can be assembled into larger scaffolds. In this manner, individual microgels can be customized for single or multi-cell co-culture applications, or heterogeneous populations can be used as building blocks to create microporous assembled scaffolds that more closely mimic tissue heterogeneities. The inherent versatility of these materials allows user-defined control of the microenvironments, from the order of singly encapsulated cells to entire three-dimensional cell scaffolds. These hydrogel scaffolds are promising for moving towards personalized medicine approaches and recapitulating the multifaceted microenvironments that exist in vivo.

2.
Acta Biomater ; 145: 77-87, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35460910

RESUMO

Postmenopausal osteoporosis results from a pro-resorptive bone environment, which decreases bone mineral density causing increased fracture risk. Bone marrow derived mesenchymal stem/stromal cells (MSCs) secrete factors involved in bone homeostasis, but osteoporosis mediated changes to their secretions remain understudied. Herein, we examined the secretome of MSCs isolated from ovariectomized rats (OVX rMSCs), a model of post-menopausal osteoporosis, as a function of cell-cell interactions. Specifically, we controlled clustering of OVX and SHAM rMSCs by assembling them in granular hydrogels synthesized from poly(ethylene glycol) microgels with average diameters of ∼10, 100, and 200 µm. We directed both the sizes of rMSC clusters (single cells to ∼30 cells/cluster) and the percentages of cells within clusters (∼20-90%) by controlling the scaffold pore dimensions. Large clusters of OVX rMSCs had a pro-resorptive secretory profile, with increased concentrations of Activin A, CXCL1, CX3CL1, MCP-1, TIMP-1, and TNF-ɑ, compared to SHAM rMSCs. As this pro-resorptive bias was only observed in large cell clusters, we characterized the expression of several cadherins, mediators of cell-cell contacts. N-cadherin expression was elevated (∼4-fold) in OVX relative to SHAM rMSCs, in both cell clusters and single cells. Finally, TIMP-1 and MCP-1 secretion was only decreased in large cell clusters of OVX rMSCs when N-cadherin interactions were blocked, highlighting the dependence of OVX rMSC secretion of pro-resorptive cytokines on N-cadherin mediated cell-cell contacts. Further elucidation of the N-cadherin mediated osteoporotic MSC secretome may have implications for developing therapies for postmenopausal osteoporosis. STATEMENT OF SIGNIFICANCE: Postmenopausal osteoporosis is a prevalent bone disorder that affects tens of millions of women worldwide. This disease is characterized by severe bone loss resulting from a pro-resorptive bone marrow environment, where the rates of bone resorption outpace the rates of bone deposition. The paracrine factors secreted by bone marrow MSCs can influence cell types responsible for bone homeostasis, but the osteoporosis-mediated changes to MSC secretory properties remains understudied. In this study, we used PEG-based porous granular scaffolds to study the influence of cell clustering on the secretory properties of osteoporotic MSCs. We observed increased secretion of several pro-resorptive factors by osteoporotic MSCs in large clusters. Further, we explored the dependence of this altered secretion profile on N-cadherin mediated cell-cell contacts.


Assuntos
Caderinas , Hidrogéis , Osteoporose Pós-Menopausa , Osteoporose , Animais , Caderinas/metabolismo , Feminino , Humanos , Hidrogéis/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Osteoporose/terapia , Osteoporose Pós-Menopausa/complicações , Ovariectomia/efeitos adversos , Polietilenoglicóis/farmacologia , Ratos , Ratos Sprague-Dawley , Secretoma/efeitos dos fármacos , Secretoma/metabolismo , Inibidor Tecidual de Metaloproteinase-1
3.
Bioeng Transl Med ; 6(2): e10217, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34027099

RESUMO

There is a desire in regenerative medicine to create biofunctional materials that can control and direct cell function in a precise manner. One particular stem cell of interest, human mesenchymal stem cells (hMSCs), can function as regulators of the immunogenic response and aid in tissue regeneration and wound repair. Here, a porous hydrogel scaffold assembled from microgel subunits was used to recapitulate part of this immunomodulatory behavior. The scaffolds were used to culture a macrophage cell line, while cytokines were delivered exogenously to polarize the macrophages to either a pro-inflammatory (M1) or alternatively activated (M2a) phenotypes. Using a cytokine array, interleukin 10 (IL-10) was identified as one key anti-inflammatory factor secreted by hMSCs in pro-inflammatory conditions; it was elevated (125 ± 25 pg/ml) in pro-inflammatory conditions compared to standard medium (6 ± 10 pg/ml). The ability of hMSC laden scaffolds to reverse the M1 phenotype was then examined, even in the presence of exogenous pro-inflammatory cytokines. Co-culture of M1 and M2 macrophages with hMSCs reduced the secretion of TNFα, a pro-inflammatory cytokine even in the presence of pro-inflammatory stimulatory factors. Next, IL-10 was supplemented in the medium or tethered directly to the microgel subunits; both methods limited the secretion of pro-inflammatory cytokines of encapsulated macrophages even in pro-inflammatory conditions. Cumulatively, these results reveal the potential of biofunctional microgel-based scaffolds as acellular therapies to present anti-inflammatory cytokines and control the immunogenic cascade.

4.
Biomaterials ; 255: 120205, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32574845

RESUMO

Three biorthogonal click reactions, a photoinitiated thiol-yne reaction, an azide-alkyne cycloaddition, and a methyltetrazine-transcyclooctene Diels Alder, were used to independently control the presentation of several bioactive proteins to valvular interstitial cells (VICs) in hydrogel scaffolds. Tethered fibroblast growth factor (FGF-2) was found to suppress myofibroblast activation (from 48 ± 7% to 17 ± 6%) and promote proliferation (from 10 ± 2% to 54 ± 3%) at a concentration of 10 ng/mL. In the presence of the pro-fibrotic cytokine transforming growth factor-beta (TGF-ß1), FGF-2 could protect the VIC fibroblast phenotype, even at much higher concentrations of TGF-ß1 than that of FGF-2. With respect to the fibrocalcific VIC phenotype, TGF-ß1 and bone-morphogenic protein-2 (BMP-2) were found to synergistically promote calcific nodule formation (a five-fold increase in nodules compared to TGF-ß1 or BMP-2 alone). Exploiting the orthogonal click reactions, FGF-2, TGF-ß1 and BMP-2 combinations were patterned into distinct regions on a hydrogel to control VIC activation and nodule formation. Cellular crosstalk between separate regions of the same scaffold was affected by the size of each region as well as the interfacial area between different regions. Collectively, these results demonstrate the versatility and robustness of a photoinitiated thiol-yne reaction to template pendant functionalities that allow for the bioconjugation of multiple proteins. This approach maintains protein bioactivity, providing an in vitro platform capable of achieving a better understanding of the complex mechanisms involved in tissue fibrosis.


Assuntos
Estenose da Valva Aórtica , Calcinose , Valva Aórtica , Células Cultivadas , Química Click , Fibroblastos , Humanos , Fator de Crescimento Transformador beta1
5.
Biomaterials ; 232: 119725, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31918222

RESUMO

Human mesenchymal stem/stromal cells (hMSCs) are known to secrete numerous cytokines that signal to endogenous cells and aid in tissue regeneration. However, the role that biomaterial scaffolds can play in controlling hMSC secretory properties has been less explored. Here, microgels were co-assembled with hMSCs using three different microgel populations, with large (190 ± 100 µm), medium (110 ± 60 µm), and small (13 ± 6 µm) diameters, to create distinct porous environments that influenced hMSC clustering. Cells embedded in large diameter microgel networks resided in large clusters (~40 cells), compared to small clusters (~6 cells) observed in networks using medium diameter microgels and primarily single cells in small diameter microgel networks. Using a cytokine microarray, an overall increase in secretion was observed in scaffolds that promoted hMSC clustering, with over 60% of the measured cytokines most elevated in the large diameter microgel networks. N-cadherin interactions were identified as partially mediating these differences, so the microgel formulations were modified with an N-cadherin epitope, HAVDI, to mimic cell-cell interactions. Results revealed increased secretory properties for hMSCs in HAVDI functionalized scaffolds, even the non-clustered cells in small diameter microgel networks. Together, these results demonstrate opportunities for microgel-based scaffold systems for hMSC delivery and tailoring of porous materials properties to promote their secretory potential.


Assuntos
Células-Tronco Mesenquimais , Microgéis , Materiais Biocompatíveis , Humanos , Porosidade , Alicerces Teciduais
6.
Adv Healthc Mater ; 6(15)2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28485127

RESUMO

While microporous scaffolds are increasingly used for regenerative medicine and tissue repair applications, the most common techniques to fabricate these scaffolds use templating or top-down fabrication approaches. Cytocompatible bottom-up assembly methods afford the opportunity to assemble microporous systems in the presence of cells and create complex polymer-cell composite systems in situ. Here, microgel building blocks with clickable surface groups are synthesized for the bottom-up fabrication of porous cell-laden scaffolds. The facile nature of assembly allows for human mesenchymal stem cells to be incorporated throughout the porous scaffold. Particles are designed with mean diameters of ≈10 and 100 µm, and assembled to create varied microenvironments. The resulting pore sizes and their distribution significantly alter cell morphology and cytoskeletal formation. This microgel-based system provides numerous tunable properties that can be used to control multiple aspects of cellular growth and development, as well as providing the ability to recapitulate various biological interfaces.


Assuntos
Cápsulas/química , Química Click/métodos , Hidrogéis/química , Células-Tronco Mesenquimais/fisiologia , Esferoides Celulares/fisiologia , Esferoides Celulares/transplante , Alicerces Teciduais , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Células Cultivadas , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Teste de Materiais , Células-Tronco Mesenquimais/citologia , Esferoides Celulares/citologia , Engenharia Tecidual/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA