Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 623(7986): 307-312, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37880364

RESUMO

Surface waves can lead to intriguing transport phenomena. In particular, surface phonon polaritons (SPhPs), which result from coupling between infrared light and optical phonons, have been predicted to contribute to heat conduction along polar thin films and nanowires1. However, experimental efforts so far suggest only very limited SPhP contributions2-5. Through systematic measurements of thermal transport along the same 3C-SiC nanowires with and without a gold coating on the end(s) that serves to launch SPhPs, here we show that thermally excited SPhPs can substantially enhance the thermal conductivity of the uncoated portion of these wires. The extracted pre-decay SPhP thermal conductance is more than two orders of magnitude higher than the Landauer limit predicted on the basis of equilibrium Bose-Einstein distributions. We attribute the notable SPhP conductance to the efficient launching of non-equilibrium SPhPs from the gold-coated portion into the uncoated SiC nanowires, which is strongly supported by the observation that the SPhP-mediated thermal conductivity is proportional to the length of the gold coating(s). The reported discoveries open the door for modulating energy transport in solids by introducing SPhPs, which can effectively counteract the classical size effect in many technologically important films and improve the design of solid-state devices.

2.
Nature ; 602(7898): 595-600, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35197618

RESUMO

The lattice symmetry of a crystal is one of the most important factors in determining its physical properties. Particularly, low-symmetry crystals offer powerful opportunities to control light propagation, polarization and phase1-4. Materials featuring extreme optical anisotropy can support a hyperbolic response, enabling coupled light-matter interactions, also known as polaritons, with highly directional propagation and compression of light to deeply sub-wavelength scales5. Here we show that monoclinic crystals can support hyperbolic shear polaritons, a new polariton class arising in the mid-infrared to far-infrared due to shear phenomena in the dielectric response. This feature emerges in materials in which the dielectric tensor cannot be diagonalized, that is, in low-symmetry monoclinic and triclinic crystals in which several oscillators with non-orthogonal relative orientations contribute to the optical response6,7. Hyperbolic shear polaritons complement previous observations of hyperbolic phonon polaritons in orthorhombic1,3,4 and hexagonal8,9 crystal systems, unveiling new features, such as the continuous evolution of their propagation direction with frequency, tilted wavefronts and asymmetric responses. The interplay between diagonal loss and off-diagonal shear phenomena in the dielectric response of these materials has implications for new forms of non-Hermitian and topological photonic states. We anticipate that our results will motivate new directions for polariton physics in low-symmetry materials, which include geological minerals10, many common oxides11 and organic crystals12, greatly expanding the material base and extending design opportunities for compact photonic devices.

3.
Nature ; 601(7894): 556-561, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35082421

RESUMO

As the length scales of materials decrease, the heterogeneities associated with interfaces become almost as important as the surrounding materials. This has led to extensive studies of emergent electronic and magnetic interface properties in superlattices1-9. However, the interfacial vibrations that affect the phonon-mediated properties, such as thermal conductivity10,11, are measured using macroscopic techniques that lack spatial resolution. Although it is accepted that intrinsic phonons change near boundaries12,13, the physical mechanisms and length scales through which interfacial effects influence materials remain unclear. Here we demonstrate the localized vibrational response of interfaces in strontium titanate-calcium titanate superlattices by combining advanced scanning transmission electron microscopy imaging and spectroscopy, density functional theory calculations and ultrafast optical spectroscopy. Structurally diffuse interfaces that bridge the bounding materials are observed and this local structure creates phonon modes that determine the global response of the superlattice once the spacing of the interfaces approaches the phonon spatial extent. Our results provide direct visualization of the progression of the local atomic structure and interface vibrations as they come to determine the vibrational response of an entire superlattice. Direct observation of such local atomic and vibrational phenomena demonstrates that their spatial extent needs to be quantified to understand macroscopic behaviour. Tailoring interfaces, and knowing their local vibrational response, provides a means of pursuing designer solids with emergent infrared and thermal responses.

4.
Nano Lett ; 24(1): 114-121, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38164942

RESUMO

Extended defects in wide-bandgap semiconductors have been widely investigated using techniques providing either spectroscopic or microscopic information. Nano-Fourier transform infrared spectroscopy (nano-FTIR) is a nondestructive characterization method combining FTIR with nanoscale spatial resolution (∼20 nm) and topographic information. Here, we demonstrate the capability of nano-FTIR for the characterization of extended defects in semiconductors by investigating an in-grown stacking fault (IGSF) present in a 4H-SiC epitaxial layer. We observe a local spectral shift of the mid-infrared near-field response, consistent with the identification of the defect stacking order as 3C-SiC (cubic) from comparative simulations based on the finite dipole model (FDM). This 3C-SiC IGSF contrasts with the more typical 8H-SiC IGSFs reported previously and is exemplary in showing that nanoscale spectroscopy with nano-FTIR can provide new insights into the properties of extended defects, the understanding of which is crucial for mitigating deleterious effects of such defects in alternative semiconductor materials and devices.

5.
Nano Lett ; 23(11): 5035-5041, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37235534

RESUMO

Highly anisotropic materials show great promise for spatial control and the manipulation of polaritons. In-plane hyperbolic phonon polaritons (HPhPs) supported by α-phase molybdenum trioxide (MoO3) allow for wave propagation with a high directionality due to the hyperbola-shaped isofrequency contour (IFC). However, the IFC prohibits propagations along the [001] axis, hindering information or energy flow. Here, we illustrate a novel approach to manipulating the HPhP propagation direction. We experimentally demonstrate that geometrical confinement in the [100] axis can guide HPhPs along the forbidden direction with phase velocity becoming negative. We further developed an analytical model to provide insights into this transition. Moreover, as the guided HPhPs are formed in-plane, modal profiles were directly imaged to further expand our understanding of the formation of HPhPs. Our work reveals a possibility for manipulating HPhPs and paves the way for promising applications in metamaterials, nanophotonics, and quantum optics based on natural van der Waals materials.

6.
Nano Lett ; 22(20): 8060-8067, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36214538

RESUMO

Dielectric metasurfaces governed by bound states in the continuum (BIC) are actively investigated for achieving high-quality factors and strong electromagnetic field enhancements. Traditional approaches reported for tuning the performance of quasi-BIC metasurfaces include tuning the resonator size, period, and structure symmetry. Here we propose and experimentally demonstrate an alternative approach through engineering slots within a zigzag array of elliptical silicon resonators. Through analytical theory, three-dimensional electromagnetic modeling, and infrared spectroscopy, we systematically investigate the spectral responses and field distributions of the slotted metasurface in the mid-IR. Our results show that by introducing slots, the electric field intensity enhancement near the apex and the quality factor of the quasi-BIC resonance are increased by a factor of 2.1 and 3.3, respectively, in comparison to the metasurface without slots. Furthermore, the slotted metasurface also provides extra regions of electromagnetic enhancement and confinement, which holds enormous potential in particle trapping, sensing, and emission enhancement.


Assuntos
Campos Eletromagnéticos , Silício , Vibração , Espectrofotometria Infravermelho , Eletricidade
7.
Nat Mater ; 20(12): 1663-1669, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34675374

RESUMO

Wavelength-selective thermal emitters (WS-EMs) are of interest due to the lack of cost-effective, narrow-band sources in the mid- to long-wave infrared. WS-EMs can be realized via Tamm plasmon polaritons (TPPs) supported by distributed Bragg reflectors on metals. However, the design of multiple resonances is challenging as numerous structural parameters must be optimized simultaneously. Here we use stochastic gradient descent to optimize TPP emitters (TPP-EMs) composed of an aperiodic distributed Bragg reflector deposited on doped cadmium oxide (CdO) film, where layer thicknesses and carrier density are inversely designed. The combination of the aperiodic distributed Bragg reflector with the designable plasma frequency of CdO enables multiple TPP-EM modes to be simultaneously designed with arbitrary spectral control not accessible with metal-based TPPs. Using this approach, we experimentally demonstrated and numerically proposed TPP-EMs exhibiting single or multiple emission bands with designable frequencies, line-widths and amplitudes. This thereby enables lithography-free, wafer-scale WS-EMs that are complementary metal-oxide-semiconductor compatible for applications such as free-space communications and gas sensing.

8.
Nano Lett ; 21(4): 1831-1838, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33587855

RESUMO

Strong coupling between optical modes can be implemented into nanophotonic design to modify the energy-momentum dispersion relation. This approach offers potential avenues for tuning the thermal emission frequency, line width, polarization, and spatial coherence. Here, we employ three-mode strong coupling between propagating and localized surface phonon polaritons, with zone-folded longitudinal optic phonons within periodic arrays of 4H-SiC nanopillars. Energy exchange, mode evolution, and coupling strength between the three polariton branches are explored experimentally and theoretically. The influence of strong coupling upon the angle-dependent thermal emission was directly measured, providing excellent agreement with theory. We demonstrate a 5-fold improvement in the spatial coherence and 3-fold enhancement of the quality factor of the polaritonic modes, with these hybrid modes also exhibiting a mixed character that could enable opportunities to realize electrically driven emission. Our results show that polariton-phonon strong coupling enables thermal emitters, which meet the requirements for a host of IR applications in a simple, lightweight, narrow-band, and yet bright emitter.

9.
Nano Lett ; 21(19): 7921-7928, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34534432

RESUMO

The hyperbolic phonon polaritons supported in hexagonal boron nitride (hBN) with long scattering lifetimes are advantageous for applications such as super-resolution imaging via hyperlensing. Yet, hyperlens imaging is challenging for distinguishing individual and closely spaced objects and for correlating the complicated hyperlens fields with the structure of an unknown object underneath. Here, we make significant strides to overcome each of these challenges. First, we demonstrate that monoisotopic h11BN provides significant improvements in spatial resolution, experimentally resolving structures as small as 44 nm and those with sub 25 nm spacings at 6.76 µm free-space wavelength. We also present an image reconstruction algorithm that provides a structurally accurate, visual representation of the embedded objects from the complex hyperlens field. Further, we offer additional insights into optimizing hyperlens performance on the basis of material properties, with an eye toward realizing far-field imaging modalities. Thus, our results significantly advance label-free, high-resolution, spectrally selective hyperlens imaging and image reconstruction methodologies.


Assuntos
Microscopia , Fônons , Processamento de Imagem Assistida por Computador
10.
Nano Lett ; 21(13): 5767-5773, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34142555

RESUMO

Natural hyperbolic materials with dielectric permittivities of opposite signs along different principal axes can confine long-wavelength electromagnetic waves down to the nanoscale, well below the diffraction limit. Confined electromagnetic waves coupled to phonons in hyperbolic dielectrics including hexagonal boron nitride (hBN) and α-MoO3 are referred to as hyperbolic phonon polaritons (HPPs). HPP dissipation at ambient conditions is substantial, and its fundamental limits remain unexplored. Here, we exploit cryogenic nanoinfrared imaging to investigate propagating HPPs in isotopically pure hBN and naturally abundant α-MoO3 crystals. Close to liquid-nitrogen temperatures, losses for HPPs in isotopic hBN drop significantly, resulting in propagation lengths in excess of 8 µm, with lifetimes exceeding 5 ps, thereby surpassing prior reports on such highly confined polaritonic modes. Our nanoscale, temperature-dependent imaging reveals the relevance of acoustic phonons in HPP damping and will be instrumental in mitigating such losses for miniaturized mid-infrared technologies operating at liquid-nitrogen temperatures.

11.
Can J Urol ; 28(3): 10725-10728, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34129470

RESUMO

INTRODUCTION: Although onabotulinumtoxinA (BTX) is commonly utilized by multiple specialists, it is unclear how often or reasons why patients receive more than the recommended maximum dose. The goal of this study was to determine if excess BTX use occurs in urologic practice. MATERIALS AND METHODS: This retrospective cohort identified patients who underwent intravesical BTX between 01/2013-12/2017 at an academic hospital. All BTX administrations for any indication were identified. Excess BTX was defined as receiving greater than the current recommended maximum dosage of 400 units within 3 months. RESULTS: A total of 361 patient received intravesical BTX. These patients underwent 755 procedures using BTX, 673(89.1%) intravesical and 82(10.9%) non-urologic. Other site injections occurred in 14 patients, and 7 (50.0%) of these patients had at least one instance of excess. In these 7 patients, there were a total of 15 instances of excess use from either a single injection (3 instances) or a subsequent injection within 3 months (12 instances). No excess use occurred in patients who received only intravesical BTX. Discordance was noted between the administered dose, pharmacy dispensing information (46.9%), and nursing medication administration record (MAR) (54.3%). All dosages matched in only 39.2% procedures. CONCLUSIONS: Although excess BTX use is overall infrequent in urologic practice, it is common in our patients prescribed the drug by non-urologic providers (50%). Pharmacy dispensing and nursing MAR information are unreliable in determining the actual administered dose. This highlights the need for providers to further discuss BTX use with patients and the need for improved tracking of BTX administration and communication across specialties.


Assuntos
Toxinas Botulínicas Tipo A , Fármacos Neuromusculares , Humanos , Estudos Retrospectivos , Resultado do Tratamento
12.
13.
Nano Lett ; 19(2): 948-957, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30582700

RESUMO

Polaritonic materials that support epsilon-near-zero (ENZ) modes offer the opportunity to design light-matter interactions at the nanoscale through extreme subwavelength light confinement, producing phenomena like resonant perfect absorption. However, the utility of ENZ modes in nanophotonic applications has been limited by a flat spectral dispersion, which leads to small group velocities and extremely short propagation lengths. Here, we overcome this constraint by hybridizing ENZ and surface plasmon polariton (SPP) modes in doped cadmium oxide epitaxial bilayers. This results in strongly coupled hybrid modes that are characterized by an anticrossing in the polariton dispersion and a large spectral splitting on the order of 1/3 of the mode frequency. These hybrid modes simultaneously achieve modal propagation and ENZ mode-like interior field confinement, adding propagation character to ENZ mode properties. We subsequently tune the resonant frequencies, dispersion, and coupling of these polaritonic-hybrid-epsilon-near-zero (PH-ENZ) modes by tailoring the modal oscillator strength and the ENZ-SPP spectral overlap. PH-ENZ modes ultimately leverage the most desirable characteristics of both ENZ and SPP modes, allowing us to overcome the canonical plasmonic trade-off between confinement and propagation length.

14.
Nano Lett ; 19(11): 7725-7734, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31650843

RESUMO

Hyperbolic phonon polaritons (HPhPs) are generated when infrared photons couple to polar optic phonons in anisotropic media, confining long-wavelength light to nanoscale volumes. However, to realize the full potential of HPhPs for infrared optics, it is crucial to understand propagation and loss mechanisms on substrates suitable for applications from waveguiding to infrared sensing. We employ scattering-type scanning near-field optical microscopy (s-SNOM) and nano-Fourier transform infrared (FTIR) spectroscopy, in concert with analytical and numerical calculations, to elucidate HPhP characteristics as a function of the complex substrate dielectric function. We consider propagation on suspended, dielectric and metallic substrates to demonstrate that the thickness-normalized wavevector can be reduced by a factor of 25 simply by changing the substrate from dielectric to metallic behavior. Moreover, by incorporating the imaginary contribution to the dielectric function in lossy materials, the wavevector can be dynamically controlled by small local variations in loss or carrier density. Counterintuitively, higher-order HPhP modes are shown to exhibit the same change in the polariton wavevector as the fundamental mode, despite the drastic differences in the evanescent ranges of these polaritons. However, because polariton refraction is dictated by the fractional change in the wavevector, this still results in significant differences in polariton refraction and reduced sensitivity to substrate-induced losses for the higher-order HPhPs. Such effects may therefore be used to spatially separate hyperbolic modes of different orders and for index-based sensing schemes. Our results advance our understanding of fundamental hyperbolic polariton excitations and their potential for on-chip photonics and planar metasurface optics.

15.
Nat Mater ; 17(2): 134-139, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29251721

RESUMO

Conventional optical components are limited to size scales much larger than the wavelength of light, as changes to the amplitude, phase and polarization of the electromagnetic fields are accrued gradually along an optical path. However, advances in nanophotonics have produced ultrathin, so-called 'flat' optical components that beget abrupt changes in these properties over distances significantly shorter than the free-space wavelength. Although high optical losses still plague many approaches, phonon polariton (PhP) materials have demonstrated long lifetimes for sub-diffractional modes in comparison to plasmon-polariton-based nanophotonics. We experimentally observe a threefold improvement in polariton lifetime through isotopic enrichment of hexagonal boron nitride (hBN). Commensurate increases in the polariton propagation length are demonstrated via direct imaging of polaritonic standing waves by means of infrared nano-optics. Our results provide the foundation for a materials-growth-directed approach aimed at realizing the loss control necessary for the development of PhP-based nanophotonic devices.

16.
Nature ; 562(7728): 499-501, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30356189
17.
Nano Lett ; 18(7): 4285-4292, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29894195

RESUMO

We report the first observation of epsilon-near-zero (ENZ) phonon polaritons in an ultrathin AlN film fully hybridized with surface phonon polaritons (SPhP) supported by the adjacent SiC substrate. Employing a strong coupling model for the analysis of the dispersion and electric field distribution in these hybridized modes, we show that they share the most prominent features of the two precursor modes. The novel ENZ-SPhP coupled polaritons with a highly propagative character and deeply subwavelength light confinement can be utilized as building blocks for future infrared and terahertz nanophotonic integration and communication devices.

18.
Nano Lett ; 18(3): 1628-1636, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29451802

RESUMO

The inherent crystal anisotropy of hexagonal boron nitride (hBN) provides the ability to support hyperbolic phonon polaritons, that is, polaritons that can propagate with very large wave vectors within the material volume, thereby enabling optical confinement to exceedingly small dimensions. Indeed, previous research has shown that nanometer-scale truncated nanocone hBN cavities, with deep subdiffractional dimensions, support three-dimensionally confined optical modes in the mid-infrared. Because of optical selection rules, only a few of the many theoretically predicted modes have been observed experimentally via far-field reflection and scattering-type scanning near-field optical microscopy (s-SNOM). The photothermal induced resonance (PTIR) technique probes optical and vibrational resonances overcoming weak far-field emission by leveraging an atomic force microscope (AFM) probe to transduce local sample expansion caused by light absorption. Here we show that PTIR enables the direct observation of previously unobserved, dark hyperbolic modes of hBN nanostructures. Leveraging these optical modes and their wide range of angular and radial momenta could provide a new degree of control over the electromagnetic near-field concentration, polarization in nanophotonic applications.

19.
Nano Lett ; 18(3): 1930-1936, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29437401

RESUMO

We present a wafer-scale array of resonant coaxial nanoapertures as a practical platform for surface-enhanced infrared absorption spectroscopy (SEIRA). Coaxial nanoapertures with sub-10 nm gaps are fabricated via photolithography, atomic layer deposition of a sacrificial Al2O3 layer to define the nanogaps, and planarization via glancing-angle ion milling. At the zeroth-order Fabry-Pérot resonance condition, our coaxial apertures act as a "zero-mode resonator (ZMR)", efficiently funneling as much as 34% of incident infrared (IR) light along 10 nm annular gaps. After removing Al2O3 in the gaps and inserting silk protein, we can couple the intense optical fields of the annular nanogap into the vibrational modes of protein molecules. From 7 nm gap ZMR devices coated with a 5 nm thick silk protein film, we observe high-contrast IR absorbance signals drastically suppressing 58% of the transmitted light and infer a strong IR absorption enhancement factor of 104∼105. These single nanometer gap ZMR devices can be mass-produced via batch processing and offer promising routes for broad applications of SEIRA.

20.
Nat Mater ; 16(2): 182-194, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27893724

RESUMO

In recent years, enhanced light-matter interactions through a plethora of dipole-type polaritonic excitations have been observed in two-dimensional (2D) layered materials. In graphene, electrically tunable and highly confined plasmon-polaritons were predicted and observed, opening up opportunities for optoelectronics, bio-sensing and other mid-infrared applications. In hexagonal boron nitride, low-loss infrared-active phonon-polaritons exhibit hyperbolic behaviour for some frequencies, allowing for ray-like propagation exhibiting high quality factors and hyperlensing effects. In transition metal dichalcogenides, reduced screening in the 2D limit leads to optically prominent excitons with large binding energy, with these polaritonic modes having been recently observed with scanning near-field optical microscopy. Here, we review recent progress in state-of-the-art experiments, and survey the vast library of polaritonic modes in 2D materials, their optical spectral properties, figures of merit and application space. Taken together, the emerging field of 2D material polaritonics and their hybrids provide enticing avenues for manipulating light-matter interactions across the visible, infrared to terahertz spectral ranges, with new optical control beyond what can be achieved using traditional bulk materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA