Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Gene ; 927: 148625, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38830515

RESUMO

The orchestration of fetal kidney development involves the precise control of numerous genes, including HNF1A, HNF1B and PKHD1. Understanding the genetic factors influencing fetal kidney development is essential for unraveling the complexities of renal disorders. This study aimed to search for disease-causing variants in HNF1A, HNF1B, PKHD1 genes, among fetus and babies or via parental samples, using sanger sequencing, NGS technologie and MLPA. The study revealed an absence of gene deletions and disease-causing variants in the HNF1B gene. However, five previously SNPs in the HNF1A gene were identified in four patients (patients 1, 2, 3, and 4). These include c.51C > G (Exon1, p. Leu17=), c.79A > C (Exon1, p. Ile27Leu), c.1375C > T (Exon7, p. Leu459=), c.1460G > A (Exon7, p. Ser487Asn), and c.1501 + 7G > A (Intron7). Additionally, in addition to previously SNPs identified, a de novo heterozygous missense mutation (p.E508K) was detected in patient 4. Furthermore, a heterozygous mutation in exon 16 (p. Arg494*; c.1480C > T) was identified in both parents of patient 5, allowing predictions of fetal homozygosity. Bioinformatic analyses predicted the effects of the c.1522G > A mutation (p.E508K) on splicing processes, pre-mRNA structures, and protein instability and conformation. Similarly, the c.1480C > T mutation (p. Arg494*) was predicted to introduce a premature codon stop, leads to the production of a shorter protein with altered or impaired function. Identification of variants in the HNF1A and in PKHD1 genes provides valuable insights into the genetic landscape of renal abnormalities in affected patients. These findings underscore the heterogeneity of genetic variants contributing to renal disorders and emphasize the importance of genetic screening.


Assuntos
Fator 1-alfa Nuclear de Hepatócito , Rim , Polimorfismo de Nucleotídeo Único , Humanos , Feminino , Rim/metabolismo , Rim/embriologia , Fator 1-alfa Nuclear de Hepatócito/genética , Masculino , Receptores de Superfície Celular/genética , Fator 1-beta Nuclear de Hepatócito/genética , Mutação , Mutação de Sentido Incorreto , Feto/metabolismo
2.
Hum Mutat ; 28(2): 196-202, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17041910

RESUMO

Approximately two-thirds of Duchenne muscular dystrophy (DMD) patients show intragenic deletions ranging from one to several exons of the DMD gene and leading to a premature stop codon. Other deletions that maintain the translational reading frame of the gene result in the milder Becker muscular dystrophy (BMD) form of the disease. Thus the opportunity to transform a DMD phenotype into a BMD phenotype appeared as a new treatment strategy with the development of antisense oligonucleotides technology, which is able to induce an exon skipping at the pre-mRNA level in order to restore an open reading frame. Because the DMD gene contains 79 exons, thousands of potential transcripts could be produced by exon skipping and should be investigated. The conventional approach considers skipping of a single exon. Here we report the comparison of single- and multiple-exon skipping strategies based on bioinformatic analysis. By using the Universal Mutation Database (UMD)-DMD, we predict that an optimal multiexon skipping leading to the del45-55 artificial dystrophin (c.6439_8217del) could transform the DMD phenotype into the asymptomatic or mild BMD phenotype. This multiple-exon skipping could theoretically rescue up to 63% of DMD patients with a deletion, while the optimal monoskipping of exon 51 would rescue only 16% of patients.


Assuntos
Distrofina/genética , Éxons , Distrofia Muscular de Duchenne/genética , Deleção de Sequência , Adolescente , Adulto , Criança , Códon sem Sentido , Biologia Computacional , Humanos , Masculino , Pessoa de Meia-Idade , Distrofia Muscular de Duchenne/terapia , Oligonucleotídeos Antissenso , Fases de Leitura Aberta , Fenótipo , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA