Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 111(10): 106805, 2013 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-25166694

RESUMO

We reveal for the first time through a theoretical first-principles study that the adsorption of a nonmagnetic π-conjugated organic molecule on a ferromagnetic surface locally increases the strength of the magnetic exchange interaction between the magnetic atoms binding directly to the molecule. This magnetic hardening effect leads to the creation of a local molecular mediated magnetic unit with a stable magnetization direction and an enhanced barrier for the magnetization switching as compared to the clean surface. Remarkably, such a hybrid organic-ferromagnetic system exhibits also a spin-filter functionality with sharp spin-split molecularlike electronic features at the molecular site.

2.
Nat Commun ; 14(1): 3978, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37407561

RESUMO

The presence of water strongly influences structure, dynamics and properties of ion-containing soft matter. Yet, the hydration of such matter is not well understood. Here, we show through a large study of monovalent π-conjugated polyelectrolytes that their reversible hydration, up to several water molecules per ion pair, occurs chiefly at the interface between the ion clusters and the hydrophobic matrix without disrupting ion packing. This establishes the appropriate model to be surface hydration, not the often-assumed internal hydration of the ion clusters. Through detailed analysis of desorption energies and O-H vibrational frequencies, together with OPLS4 and DFT calculations, we have elucidated key binding motifs of the sorbed water. Type-I water, which desorbs below 50 °C, corresponds to hydrogen-bonded water clusters constituting secondary hydration. Type-II water, which typically desorbs over 50-150 °C, corresponds to water bound to the anion under the influence of a proximal cation, or to a cation‒anion pair, at the cluster surface. This constitutes primary hydration. Type-III water, which irreversibly desorbs beyond 150 °C, corresponds to water kinetically trapped between ions. Its amount varies strongly with processing and heat treatment. As a consequence, hygroscopicity-which is the water sorption capacity per ion pair-depends not only on the ions, but also their cluster morphology.

3.
J Phys Chem B ; 121(1): 180-188, 2017 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-27997213

RESUMO

The solvation and desolvation of the Li ion play a crucial role in the electrolytes of Li based secondary batteries, and their understanding at the microscopic level is of great importance. Oligoether (glyme) based electrolytes have attracted much attention as electrolytes used in Li based secondary batteries, such as Li-ion, Li-S, and Li-O2 batteries. However, the solvation structure of the Li ion in glyme based electrolytes has not been fully clarified yet. We present a computational study on the solvation structure of lithium ions in the mixture of triglyme and lithium bis(trifluoromethylsulfonyl)-amide (LiTFSA) by means of molecular orbital and molecular dynamics calculations based on density functional theory. We found that, in the electrolyte solution composed of the equimolar mixture of triglyme and LiTFSA, lithium ions are solvated mainly by crown-ether-like curled triglyme molecules and in direct contact with an TFSA anion. We also found the aggregate formed with Li ion and TFSA anions and/or triglyme molecule(s) is equally stable, which has not been reported in the previous classical molecular dynamics simulations, suggesting that in reality a small fraction of Li ions form aggregates and they might have a significant impact on the Li ion transport. Our results demonstrate the importance of performing electronic structure based molecular dynamics of electrolyte solution to clarify the detailed solvation structure of the Li ion.

4.
Sci Rep ; 6: 29221, 2016 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-27381580

RESUMO

The miniaturization of future electronic devices requires the knowledge of interfacial properties between two-dimensional channel materials and high-κ dielectrics in the limit of one atomic layer thickness. In this report, by combining particle-swarm optimization method with first-principles calculations, we present a detailed study of structural, electronic, mechanical, and dielectric properties of Al2O3 monolayer. We predict that planar Al2O3 monolayer is globally stable with a direct band gap of 5.99 eV and thermal stability up to 1100 K. The stability of this high-κ oxide monolayer can be enhanced by substrates such as graphene, for which the interfacial interaction is found to be weak. The band offsets between the Al2O3 monolayer and graphene are large enough for electronic applications. Our results not only predict a stable high-κ oxide monolayer, but also improve the understanding of interfacial properties between a high-κ dielectric monolayer and two-dimensional material.

5.
J Phys Condens Matter ; 26(26): 263001, 2014 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-24873931

RESUMO

In this review we summarize our experience gained from several recent ab initio studies aimed to investigate how the competition between short-ranged chemical and long-ranged dispersion interactions determines the bonding mechanism of a specific set of chemically functionalized π-conjugated organic molecules on non-magnetic and magnetic metal surfaces. A key point of this review is to provide a detailed analysis on the issue of how to tune the strength of the organic molecule-surface interaction, such that the nature of the molecular bonding exhibits the specific electronic features of the physisorption or chemisorption bonding mechanisms. In particular, we discuss in detail how the precise control of these bonding mechanisms can be used to design specific electronic and magnetic properties of hybrid organic-metallic interfaces. Furthermore, our first-principles simulations provide not only the basic insights needed to interpret surface-science experiments, but are also a key tool to design organic-substrate systems with tailored properties that can be integrated into future organic-based devices for molecular electronics and molecular spintronics applications.

6.
Chem Commun (Camb) ; 49(53): 5993-5, 2013 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-23719739

RESUMO

We demonstrate that cyclooctatetraene (COT) can be stabilised in different conformations when adsorbed on different noble-metal surfaces due to varying molecule-substrate interactions. While at first glance the behaviour seems to be in accordance with Hückel's rule, a theoretical analysis reveals no significant charge transfer. The driving mechanism for the conformational change is hybridisation at the organic-metal interface and does not necessitate any charge transfer.

7.
J Phys Condens Matter ; 24(42): 424214, 2012 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-23032913

RESUMO

We have performed a systematic semi-empirical and ab initio van der Waals study to investigate the bonding mechanism of benzene (C(6)H(6)), triazine (C(3)N(3)H(3)) and borazine (B(3)N(3)H(6)) adsorbed on graphene and a single boron nitride (BN) sheet. The two semi-empirical approaches used to include the van der Waals (vdW) interactions in our density functional theory (DFT) calculations suggest that the strength of the molecule-surface interaction corresponds to a strong physisorption with no net charge transfer between the molecules and the corresponding substrates. This observation is strengthened by the use of first-principles non-local correlation vdW-DF functionals which provide a sound physical basis to include vdW interactions in DFT calculations. In particular we have employed two flavors of vdW-DF functionals which enabled us to determine the role of the non-local correlation effects in the molecule-surface bonding mechanism which cannot be assessed by using only semi-empirical vdW methods. Our study also reveals that the strength of the molecule-surface interaction can be influenced by the electronegativity of the B, C and N atoms.


Assuntos
Benzeno/química , Compostos de Boro/química , Grafite/química , Interações Hidrofóbicas e Hidrofílicas , Triazinas/química , Absorção , Benzeno/metabolismo , Compostos de Boro/metabolismo , Simulação por Computador , Grafite/metabolismo , Ligação de Hidrogênio , Teoria Quântica , Termodinâmica , Triazinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA