Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Brain ; 147(1): 122-134, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-37633263

RESUMO

Rett syndrome is a rare genetic neurodevelopmental disease, affecting 1 in over 10 000 females born worldwide, caused by de novo mutations in the X-chromosome-located methyl-CpG-binding protein 2 (MeCP2) gene. Despite the great effort put forth by the scientific community, a therapy for this devastating disease is still needed. Here, we tested the therapeutic effects of a painless mutein of the nerve growth factor (NGF), called human NGF painless (hNGFp), via a non-invasive intranasal delivery in female MeCP2+/- mice. Of note, previous work had demonstrated a broad biodistribution of hNGFp in the mouse brain by the nasal delivery route. We report that (i) the long-term lifelong treatment of MeCP2+/- mice with hNGFp, starting at 2 months of age, increased the chance of survival while also greatly improving behavioural parameters. Furthermore, when we assessed the phenotypic changes brought forth by (ii) a short-term 1-month-long hNGFp-treatment, starting at 3 months of age (right after the initial presentation of symptoms), we observed the rescue of a well known neuronal target population of NGF, cholinergic neurons in the medial septum. Moreover, we reveal a deficit in microglial morphology in MeCP2+/- mice, completely reversed in treated animals. This effect on microglia is in line with reports showing microglia to be a TrkA-dependent non-neuronal target cell population of NGF in the brain. To understand the immunomodulatory activity of hNGFp, we analysed the cytokine profile after hNGFp treatment in MeCP2+/- mice, to discover that the treatment recovered the altered expression of key neuroimmune-communication molecules, such as fractalkine. The overall conclusion is that hNGFp delivered intranasally can ameliorate symptoms in the MeCP2+/- model of Rett syndrome, by exerting strong neuroprotection with a dual mechanism of action: directly on target neurons and indirectly via microglia.


Assuntos
Síndrome de Rett , Humanos , Feminino , Camundongos , Animais , Síndrome de Rett/terapia , Fator de Crescimento Neural/metabolismo , Distribuição Tecidual , Proteína 2 de Ligação a Metil-CpG/genética , Encéfalo/metabolismo , Neurônios/metabolismo , Modelos Animais de Doenças
2.
Proc Natl Acad Sci U S A ; 116(43): 21563-21572, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31515449

RESUMO

The p75 neurotrophin (NT) receptor (p75NTR) plays a crucial role in balancing survival-versus-death decisions in the nervous system. Yet, despite 2 decades of structural and biochemical studies, a comprehensive, accepted model for p75NTR activation by NT ligands is still missing. Here, we present a single-molecule study of membrane p75NTR in living cells, demonstrating that the vast majority of receptors are monomers before and after NT activation. Interestingly, the stoichiometry and diffusion properties of the wild-type (wt) p75NTR are almost identical to those of a receptor mutant lacking residues previously believed to induce oligomerization. The wt p75NTR and mutated (mut) p75NTR differ in their partitioning in cholesterol-rich membrane regions upon nerve growth factor (NGF) stimulation: We argue that this is the origin of the ability of wt p75NTR , but not of mut p75NTR, to mediate immature NT (proNT)-induced apoptosis. Both p75NTR forms support proNT-induced growth cone retraction: We show that receptor surface accumulation is the driving force for cone collapse. Overall, our data unveil the multifaceted activity of the p75NTR monomer and let us provide a coherent interpretative frame of existing conflicting data in the literature.


Assuntos
Apoptose/fisiologia , Cones de Crescimento/fisiologia , Fatores de Crescimento Neural/metabolismo , Receptor de Fator de Crescimento Neural/metabolismo , Animais , Linhagem Celular , Membrana Celular/metabolismo , Humanos , Camundongos , Camundongos Knockout , Sistema Nervoso/metabolismo , Fenômenos Fisiológicos do Sistema Nervoso/genética , Receptor de Fator de Crescimento Neural/genética
3.
Nat Methods ; 14(3): 279-282, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28092690

RESUMO

The ability to selectively interfere with post-translationally modified proteins would have many biological and therapeutic applications. However, post-translational modifications cannot be selectively targeted by nucleic-acid-based interference approaches. Here we describe post-translational intracellular silencing antibody technology (PISA), a method for selecting intrabodies against post-translationally modified proteins. We demonstrate our method by generating intrabodies against native acetylated proteins and showing functional interference in living cells.


Assuntos
Anticorpos/imunologia , Integrase de HIV/imunologia , Integrase de HIV/metabolismo , Histonas/imunologia , Histonas/metabolismo , Processamento de Proteína Pós-Traducional/imunologia , Acetilação , Humanos
4.
Biochem Biophys Res Commun ; 509(3): 763-766, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30612733

RESUMO

The neurotrophin Nerve growth factor (NGF) plays a critical role in the mature and developing nervous system. A point mutation (R100W) in the NGFB gene was found in patients with Hereditary Sensory and Autonomic Neuropathy type V (HSAN V), which leads to pain insensitivity. In a previous work it has been shown that the mutation provokes a reduced secretion of mature NGF. In this study we generated and analyzed homozygous NGFR100W/R100W mice to understand whether the reduced NGF bioavailability can contribute to the clinical phenotype of the homozygous condition. We found that the majority of NGFR100W/R100W mice were born normal but failed to reach the first month of age. This early lethality was rescued by daily treatment with wild type NGF. In addition, we found that the density of cholinergic neurons of homozygous mice was unaffected in the medial septum and in the nucleus basalis of Meynert, whereas, suprisingly, it was increased specifically in the striatum. Due to the known action of the striatal cholinergic tone in modulating pain, our findings support the hypothesis that a central mechanism, linked to the NGFR100W-dependent increase of the striatal cholinergic tone, can contribute to the pain insensitivity observed in HSAN V patients.


Assuntos
Neurônios Colinérgicos/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Neuropatias Hereditárias Sensoriais e Autônomas/terapia , Fator de Crescimento Neural/uso terapêutico , Animais , Disponibilidade Biológica , Neurônios Colinérgicos/citologia , Neurônios Colinérgicos/metabolismo , Corpo Estriado/citologia , Corpo Estriado/metabolismo , Neuropatias Hereditárias Sensoriais e Autônomas/genética , Homozigoto , Humanos , Camundongos , Fator de Crescimento Neural/genética , Fator de Crescimento Neural/farmacocinética , Mutação Puntual
5.
Brain ; 140(1): 201-217, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28031222

RESUMO

Nerve growth factor is a therapeutic candidate for Alzheimer's disease. Due to its pain-inducing activity, in current clinical trials nerve growth factor is delivered locally into the brain by neurosurgery, but data on the efficacy of local nerve growth factor delivery in decreasing amyloid-ß deposition are not available. To reduce the nerve growth factor pain-inducing side effects, thus avoiding the need for local brain injection, we developed human painless nerve growth factor (hNGFp), inspired by the human genetic disease hereditary sensory and autonomic neuropathy type V. hNGFp has identical neurotrophic potency as wild-type human nerve growth factor, but a 10-fold lower pain sensitizing activity. In this study we first mimicked, in the 5xFAD mouse model, the intraparenchymal delivery of hNGFp used in clinical trials and found it to be ineffective in decreasing amyloid-ß plaque load. On the contrary, the same dose of hNGFp delivered intranasally, which was widely biodistributed in the brain and did not induce pain, showed a potent anti-amyloidogenic action and rescued synaptic plasticity and memory deficits. We found that hNGFp acts on glial cells, modulating inflammatory proteins such as the soluble TNFα receptor II and the chemokine CXCL12. We further established that the rescuing effect by hNGFp is mediated by CXCL12, as pharmacological inhibition of CXCL12 receptor CXCR4 occludes most of hNGFp effects. These findings have significant therapeutic implications: (i) we established that a widespread exposure of the brain is required for nerve growth factor to fully exert its neuroprotective actions; and (ii) we have identified a new anti-neurodegenerative pathway as a broad target for new therapeutic opportunities for neurodegenerative diseases.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Córtex Cerebral/metabolismo , Quimiocina CXCL12/metabolismo , Transtornos da Memória/tratamento farmacológico , Fator de Crescimento Neural/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Dor/induzido quimicamente , Placa Amiloide/tratamento farmacológico , Administração Intranasal , Animais , Comportamento Animal , Córtex Cerebral/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Fator de Crescimento Neural/administração & dosagem , Fator de Crescimento Neural/efeitos adversos , Receptores CXCR4/antagonistas & inibidores
6.
Nucleic Acids Res ; 38(22): 8105-19, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20693533

RESUMO

Recent evidence points to homeotic proteins as actors in the crosstalk between development and DNA replication. The present work demonstrates that HOXC13, previously identified as a new member of human DNA replicative complexes, is a stable component of early replicating chromatin in living cells: it displays a slow nuclear dynamics due to its anchoring to the DNA minor groove via the arginine-5 residue of the homeodomain. HOXC13 binds in vivo to the lamin B2 origin in a cell-cycle-dependent manner consistent with origin function; the interaction maps with nucleotide precision within the replicative complex. HOXC13 displays in vitro affinity for other replicative complex proteins; it interacts also in vivo with the same proteins in a cell-cycle-dependent fashion. Chromatin-structure modifying treatments, disturbing origin function, reduce also HOXC13-origin interaction. The described interactions are not restricted to a single origin nor to a single homeotic protein (also HOXC10 binds the lamin B2 origin in vivo). Thus, HOX complexes probably contribute in a general, structure-dependent manner, to origin identification and assembly of replicative complexes thereon, in presence of specific chromatin configurations.


Assuntos
Proteínas de Homeodomínio/fisiologia , Origem de Replicação , Animais , Linhagem Celular , Cromatina/química , Proteínas de Ligação a DNA/análise , Proteínas de Ligação a DNA/metabolismo , Células HeLa , Proteínas de Homeodomínio/análise , Proteínas de Homeodomínio/metabolismo , Humanos , Lamina Tipo B/análise , Camundongos , Células NIH 3T3
7.
ACS Chem Neurosci ; 13(23): 3453-3463, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36346920

RESUMO

Brain-derived neurotrophic factor (BDNF) is a neurotrophin (NT) essential for neuronal development and synaptic plasticity. Dysregulation of BDNF signaling is implicated in different neurological disorders. The direct NT administration as therapeutics has revealed to be challenging. This has prompted the design of peptides mimicking different regions of the BDNF structure. Although loops 2 and 4 have been thoroughly investigated, less is known regarding the BDNF N-terminal region, which is involved in the selective recognition of the TrkB receptor. Herein, a dimeric form of the linear peptide encompassing the 1-12 residues of the BDNF N-terminal (d-bdnf) was synthesized. It demonstrated to act as an agonist promoting specific phosphorylation of TrkB and downstream ERK and AKT effectors. The ability to promote TrkB dimerization was investigated by advanced fluorescence microscopy and molecular dynamics (MD) simulations, finding activation modes shared with BDNF. Furthermore, d-bdnf was able to sustain neurite outgrowth and increase the expression of differentiation (NEFM, LAMC1) and polarization markers (MAP2, MAPT) demonstrating its neurotrophic activity. As TrkB activity is affected by zinc ions in the synaptic cleft, we first verified the ability of d-bdnf to coordinate zinc and then the effect of such complexation on its activity. The d-bdnf neurotrophic activity was reduced by zinc complexation, demonstrating the role of the latter in tuning the activity of the new peptido-mimetic. Taken together our data uncover the neurotrophic properties of a novel BDNF mimetic peptide and pave the way for future studies to understand the pharmacological basis of d-bdnf action and develop novel BDNF-based therapeutic strategies.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Zinco , Zinco/farmacologia
8.
Front Neurosci ; 14: 592502, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33192279

RESUMO

In recent years, transition metal dichalcogenides have been attracting an increasing interest in the biomedical field, thus implying the need of a deeper understanding of their impact on cell behavior. In this study we investigate tungsten disulfide (WS2) grown via chemical vapor deposition (CVD) on a transparent substrate (sapphire) as a platform for neural-like cell culture. We culture SH-SY5Y human neuroblastoma cells on WS2, using graphene, sapphire and standard culture well as controls. The quality, thickness and homogeneity of the materials is analyzed using atomic force microscopy and Raman spectroscopy. The cytocompatibility of CVD WS2 is investigated for the first time by cell viability and differentiation assessment on SH-SY5Y cells. We find that cells differentiated on WS2, displaying a viability and neurite length comparable with the controls. These findings shine light on the possibility of using WS2 as a cytocompatible material for interfacing neural cells.

9.
Front Mol Biosci ; 7: 195, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32850976

RESUMO

The set-up of an advanced imaging experiment requires a careful selection of suitable labeling strategies and fluorophores for the tagging of the molecules of interest. Here we provide an experimental workflow to allow evaluation of fluorolabeling performance of the chemical tags target of phosphopantetheinyl transferase enzymes (PPTases), once inserted in the sequence of different proteins of interest. First, S6 peptide tag was fused to three different single-pass transmembrane proteins (the tyrosine receptor kinases TrkA and VEGFR2 and the tumor necrosis factor receptor p75NTR), providing evidence that all of them can be conveniently albeit differently labeled. Moreover, we chose the S6-tagged TrkA construct to test eight different organic fluorophores for the PPTase labeling of membrane receptors in living cells. We systematically compared their non-specific internalization when added to a S6-tag negative cell culture, the percentage of S6-TrkA expressing cells effectively labeled and the relative mean fluorescence intensity, their photostability upon conjugation, and ratio of specific (cellular) versus background (glass-adhered) signal. This allowed to identify which fluorophores are actually recommended for these labeling reactions. Finally, we compared the PPTase labeling of a purified, YBBR-tagged Nerve Growth Factor with two differently charged organic dyes. We detected some batch-to-batch variability in the labeling yield, regardless of the fluorophore used. However, upon purification of the fluorescent species and incubation with living primary DRG neurons, no significant difference could be appreciated in both internalization and axonal transport of the labeled neurotrophins.

10.
J Vis Exp ; (154)2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31904014

RESUMO

Tau is a microtubule binding protein expressed in neurons and its main known function is related to the maintenance of cytoskeletal stability. However, recent evidence indicated that Tau is present also in other subcellular compartments including the nucleus where it is implicated in DNA protection, in rRNA transcription, in the mobility of retrotransposons and in the structural organization of the nucleolus. We have recently demonstrated that nuclear Tau is involved in the expression of the VGluT1 gene, suggesting a molecular mechanism that could explain the pathological increase of glutamate release in the early stages of Alzheimer's disease. Until recently, the involvement of nuclear Tau in modulating the expression of target genes has been relatively uncertain and ambiguous due to technical limitations that prevented the exclusion of the contribution of cytoplasmic Tau or the effect of other downstream factors not related to nuclear Tau. To overcome this uncertainty, we developed a method to study the expression of target genes specifically modulated by the nuclear Tau protein. We employed a protocol that couples the use of localization signals and the subcellular fractionation, allowing the exclusion of the interference from the cytoplasmic Tau molecules. Most notably, the protocol is easy and is composed of classic and reliable methods that are broadly applicable to study the nuclear function of Tau in other cell types and cellular conditions.


Assuntos
Doença de Alzheimer/genética , Regulação da Expressão Gênica , Proteínas tau/metabolismo , Doença de Alzheimer/patologia , Diferenciação Celular , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Humanos , Neurônios/metabolismo , Frações Subcelulares , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo
11.
Front Cell Neurosci ; 13: 386, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31496937

RESUMO

Formation of Tau aggregates is a common pathological feature of tauopathies and their accumulation directly correlates with cytotoxicity and neuronal degeneration. Great efforts have been made to understand Tau aggregation and to find therapeutics halting or reversing the process, however, progress has been slowed due to the lack of a suitable method for monitoring Tau aggregation. We developed a cell-based assay allowing to detect and quantify Tau aggregation in living cells. The system is based on the FRET biosensor CST able to monitor the molecular dynamic of Tau aggregation in different cellular conditions. We probed candidate compounds that could block Tau hyperphosphorylation. In particular, to foster the drug discovery process, we tested kinase inhibitors approved for the treatment of other diseases. We identified the ERK inhibitor PD-901 as a promising therapeutic molecule since it reduces and prevents Tau aggregation. This evidence establishes the CST cell-based aggregation assay as a reliable tool for drug discovery and suggests that PD-901 might be a promising compound to be tested for further preclinical studies on AD.

12.
Stem Cell Reports ; 11(3): 756-769, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30174317

RESUMO

The morphogen FGF8 plays a pivotal role in neocortical area patterning through its inhibitory effect on COUP-TFI/Nr2f1 anterior expression, but its mechanism of action is poorly understood. We established an in vitro model of mouse embryonic stem cell corticogenesis in which COUP-TFI protein expression is inhibited by the activation of FGF8 in a time window corresponding to cortical area patterning. Interestingly, overexpression of the COUP-TFI 3'UTR reduces the inhibitory effect of FGF8 on COUP-TFI translation. FGF8 induces the expression of few miRNAs targeting COUP-TFI 3'UTR in silico. We found that the functional inhibition of miR-21 can effectively counteract the inhibitory effect of FGF8 in vitro and regulate COUP-TFI protein levels in vivo. Accordingly, miR-21 expression is complementary to COUP-TFI expression during corticogenesis. These data support a translational control of COUP-TFI gradient expression by FGF8 via miR-21 and contribute to our understanding of how regionalized expression is established during neocortical area mapping.


Assuntos
Fator I de Transcrição COUP/genética , Córtex Cerebral/embriologia , Fator 8 de Crescimento de Fibroblasto/genética , Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs/genética , Células-Tronco Embrionárias Murinas/metabolismo , Animais , Padronização Corporal , Diferenciação Celular , Córtex Cerebral/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Biossíntese de Proteínas
13.
Front Mol Biosci ; 4: 4, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28210618

RESUMO

Neurotrophins are growth factors of fundamental importance for the development, survival and maintenance of different neuronal and non-neuronal populations. Over the years, the use of labeled neurotrophins has helped in the study of their biological functions, leading to a better understanding of the processes that regulate their transport, traffic, and signaling. However, the diverse and heterogeneous neurotrophin labeling strategies adopted so far have often led to poorly reproducible protocols and sometimes conflicting conclusions. Here we present a robust, reliable, and fast method to obtain homogeneous preparations of fluorescent proNGF and NGF with 1:1 labeling stoichiometry. This strategy is well suited for several applications, ranging from advanced imaging techniques such as single particle tracking, to analyses that require large amounts of neurotrophins such as in vivo monitoring of protein biodistribution. As a proof of the quality of the labeled NGF and proNGF preparations, we provide a quantitative analysis of their colocalization with proteins involved in the signaling endosome function and sorting. This new analysis allowed demonstrating that proNGF localizes at a sub-population of endosomes not completely overlapped to the one hosting NGF.

14.
Sci Rep ; 6: 20272, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26829890

RESUMO

The classical view of nerve growth factor (NGF) action in the nervous system is linked to its retrograde axonal transport. However, almost nothing is known on the trafficking properties of its unprocessed precursor proNGF, characterized by different and generally opposite biological functions with respect to its mature counterpart. Here we developed a strategy to fluorolabel both purified precursor and mature neurotrophins (NTs) with a controlled stoichiometry and insertion site. Using a single particle tracking approach, we characterized the axonal transport of proNGF versus mature NGF in living dorsal root ganglion neurons grown in compartmentalized microfluidic devices. We demonstrate that proNGF is retrogradely transported as NGF, but with a lower flux and a different distribution of numbers of neurotrophins per vesicle. Moreover, exploiting a dual-color labelling technique, we analysed the transport of both NT forms when simultaneously administered to the axon tips.


Assuntos
Transporte Axonal , Axônios/metabolismo , Fator de Crescimento Neural/metabolismo , Precursores de Proteínas/metabolismo , Sequência de Aminoácidos , Animais , Gânglios Espinais , Humanos , Modelos Moleculares , Fator de Crescimento Neural/química , Neurônios/metabolismo , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Precursores de Proteínas/química , Ratos , Vesículas Transportadoras/metabolismo
15.
PLoS One ; 9(11): e113708, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25426999

RESUMO

We present a toolbox for the study of molecular interactions occurring between NGF and its receptors. By means of a suitable insertional mutagenesis method we show the insertion of an 8 amino acid tag (A4) into the sequence of NGF and of 12 amino acid tags (A1 and S6) into the sequence of TrkA and P75NTR NGF-receptors. These tags are shortened versions of the acyl and peptidyl carrier proteins; they are here covalently conjugated to the biotin-substituted arm of a coenzyme A (coA) substrate by phosphopantetheinyl transferase enzymes (PPTases). We demonstrate site-specific biotinylation of the purified recombinant tagged neurotrophin, in both the immature proNGF and mature NGF forms. The resulting tagged NGF is fully functional: it can signal and promote PC12 cells differentiation similarly to recombinant wild-type NGF. Furthermore, we show that the insertion of A1 and S6 tags into human TrkA and P75NTR sequences leads to the site-specific biotinylation of these receptors at the cell surface of living cells. Crucially, the two tags are labeled selectively by two different PPTases: this is exploited to reach orthogonal fluorolabeling of the two receptors co-expressed at low density in living cells. We describe the protocols to obtain the enzymatic, site-specific biotinylation of neurotrophins and their receptors as an alternative to their chemical, nonspecific biotinylation. The present strategy has three main advantages: i) it yields precise control of stoichiometry and site of biotin conjugation; ii) the tags used can be functionalized with virtually any small probe that can be carried by coA substrates, besides (and in addition to) biotin; iii) above all it makes possible to image and track interacting molecules at the single-molecule level in living systems.


Assuntos
Fatores de Crescimento Neural/análise , Oligopeptídeos/análise , Receptores de Fator de Crescimento Neural/análise , Sequência de Aminoácidos , Animais , Biotinilação , Linhagem Celular , Clonagem Molecular , Expressão Gênica , Humanos , Modelos Moleculares , Técnicas de Sonda Molecular , Dados de Sequência Molecular , Mutagênese Insercional , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Imagem Óptica , Células PC12 , Ratos , Receptor trkA/análise , Receptor trkA/genética , Receptor trkA/metabolismo , Receptores de Fator de Crescimento Neural/genética , Receptores de Fator de Crescimento Neural/metabolismo , Proteínas Recombinantes/análise , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA