Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Am J Respir Crit Care Med ; 203(10): 1290-1305, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33306938

RESUMO

Rationale: Cigarette smoke is considered the chief leading cause of chronic obstructive pulmonary disease (COPD). Its impact on the progressive deterioration of airways has been extensively studied, but its direct effects on the pulmonary vasculature are less known. Objectives: To prove that pulmonary arterial remodeling in patients with COPD is not just a consequence of alveolar hypoxia but also due to the direct effects of cigarette smoke on the pulmonary vascular bed. Methods: We have used different molecular and cell biology approaches, as well as traction force microscopy, wire myography, and patch-clamp techniques in human cells and freshly isolated pulmonary arteries. In addition, we relied on in vivo models and human samples to analyze the effects of cigarette smoke on pulmonary vascular tone alterations. Measurements and Main Results: Cigarette smoke extract exposure directly promoted a hypertrophic, senescent phenotype that in turn contributed, through the secretion of inflammatory molecules, to an increase in the proliferative potential of nonexposed cells. Interestingly, these effects were significantly reversed by antioxidants. Furthermore, cigarette smoke extract affected cell contractility and dysregulated the expression and activity of the voltage-gated K+ channel Kv7.4. This contributed to the impairment of vasoconstriction and vasodilation responses. Most importantly, the levels of this channel were diminished in the lungs of smoke-exposed mice, smokers, and patients with COPD. Conclusions: Cigarette smoke directly contributes to pulmonary arterial remodeling through increased cell senescence, as well as vascular tone alterations because of diminished levels and function in the Kv7.4 channel. Strategies targeting these pathways may lead to novel therapies for COPD.


Assuntos
Canais de Potássio KCNQ/metabolismo , Artéria Pulmonar/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Fumar/efeitos adversos , Remodelação Vascular/fisiologia , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Artéria Pulmonar/patologia , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/metabolismo , Fumaça/efeitos adversos , Nicotiana , Vasoconstrição , Vasodilatação
2.
J Enzyme Inhib Med Chem ; 30(5): 689-721, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25347767

RESUMO

The hypoxic areas of solid cancers represent a negative prognostic factor irrespective of which treatment modality is chosen for the patient. Still, after almost 80 years of focus on the problems created by hypoxia in solid tumours, we still largely lack methods to deal efficiently with these treatment-resistant cells. The consequences of this lack may be serious for many patients: Not only is there a negative correlation between the hypoxic fraction in tumours and the outcome of radiotherapy as well as many types of chemotherapy, a correlation has been shown between the hypoxic fraction in tumours and cancer metastasis. Thus, on a fundamental basis the great variety of problems related to hypoxia in cancer treatment has to do with the broad range of functions oxygen (and lack of oxygen) have in cells and tissues. Therefore, activation-deactivation of oxygen-regulated cascades related to metabolism or external signalling are important areas for the identification of mechanisms as potential targets for hypoxia-specific treatment. Also the chemistry related to reactive oxygen radicals (ROS) and the biological handling of ROS are part of the problem complex. The problem is further complicated by the great variety in oxygen concentrations found in tissues. For tumour hypoxia to be used as a marker for individualisation of treatment there is a need for non-invasive methods to measure oxygen routinely in patient tumours. A large-scale collaborative EU-financed project 2009-2014 denoted METOXIA has studied all the mentioned aspects of hypoxia with the aim of selecting potential targets for new hypoxia-specific therapy and develop the first stage of tests for this therapy. A new non-invasive PET-imaging method based on the 2-nitroimidazole [(18)F]-HX4 was found to be promising in a clinical trial on NSCLC patients. New preclinical models for testing of the metastatic potential of cells were developed, both in vitro (2D as well as 3D models) and in mice (orthotopic grafting). Low density quantitative real-time polymerase chain reaction (qPCR)-based assays were developed measuring multiple hypoxia-responsive markers in parallel to identify tumour hypoxia-related patterns of gene expression. As possible targets for new therapy two main regulatory cascades were prioritised: The hypoxia-inducible-factor (HIF)-regulated cascades operating at moderate to weak hypoxia (<1% O(2)), and the unfolded protein response (UPR) activated by endoplasmatic reticulum (ER) stress and operating at more severe hypoxia (<0.2%). The prioritised targets were the HIF-regulated proteins carbonic anhydrase IX (CAIX), the lactate transporter MCT4 and the PERK/eIF2α/ATF4-arm of the UPR. The METOXIA project has developed patented compounds targeting CAIX with a preclinical documented effect. Since hypoxia-specific treatments alone are not curative they will have to be combined with traditional anti-cancer therapy to eradicate the aerobic cancer cell population as well.


Assuntos
Descoberta de Drogas , Neoplasias/tratamento farmacológico , Animais , Hipóxia Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Metástase Neoplásica/tratamento farmacológico , Metástase Neoplásica/patologia , Neoplasias/patologia , Relação Estrutura-Atividade
3.
Arch Biochem Biophys ; 509(2): 147-56, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21402050

RESUMO

Secreted frizzled-related protein (sFRP)-1 is a Wnt antagonist that inhibits breast carcinoma cell motility, whereas the secreted glycoprotein thrombospondin-1 stimulates adhesion and motility of the same cells. We examined whether thrombospondin-1 and sFRP-1 interact directly or indirectly to modulate cell behavior. Thrombospondin-1 bound sFRP-1 with an apparent K(d)=48nM and the related sFRP-2 with a K(d)=95nM. Thrombospondin-1 did not bind to the more distantly related sFRP-3. The association of thrombospondin-1 and sFRP-1 is primarily mediated by the amino-terminal N-module of thrombospondin-1 and the netrin domain of sFRP-1. sFRP-1 inhibited α3ß1 integrin-mediated adhesion of MDA-MB-231 breast carcinoma cells to a surface coated with thrombospondin-1 or recombinant N-module, but not adhesion of the cells on immobilized fibronectin or type I collagen. sFRP-1 also inhibited thrombospondin-1-mediated migration of MDA-MB-231 and MDA-MB-468 breast carcinoma cells. Although sFRP-2 binds similarly to thrombospondin-1, it did not inhibit thrombospondin-1-stimulated adhesion. Thus, sFRP-1 binds to thrombospondin-1 and antagonizes stimulatory effects of thrombospondin-1 on breast carcinoma cell adhesion and motility. These results demonstrate that sFRP-1 can modulate breast cancer cell responses by interacting with thrombospondin-1 in addition to its known effects on Wnt signaling.


Assuntos
Neoplasias da Mama/metabolismo , Mama/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Membrana/metabolismo , Trombospondina 1/metabolismo , Motivos de Aminoácidos , Mama/patologia , Neoplasias da Mama/patologia , Adesão Celular , Linhagem Celular Tumoral , Feminino , Glicoproteínas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana/química , Fator de Crescimento Neural/química , Trombospondina 1/química
4.
J Immunol ; 182(5): 3155-64, 2009 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19234213

RESUMO

Low oxygen tension areas are found in inflamed or diseased tissues where hypoxic cells induce survival pathways by regulating the hypoxia-inducible transcription factor (HIF). Macrophages are essential regulators of inflammation and, therefore, we have analyzed their response to hypoxia. Murine peritoneal elicited macrophages cultured under hypoxia produced higher levels of IFN-gamma and IL-12 mRNA and protein than those cultured under normoxia. A similar IFN-gamma increment was obtained with in vivo models using macrophages from mice exposed to atmospheric hypoxia. Our studies showed that IFN-gamma induction was mediated through HIF-1alpha binding to its promoter on a new functional hypoxia response element. The requirement of HIF-alpha in the IFN-gamma induction was confirmed in RAW264.7 cells, where HIF-1alpha was knocked down, as well as in resident HIF-1alpha null macrophages. Moreover, Ag presentation capacity was enhanced in hypoxia through the up-regulation of costimulatory and Ag-presenting receptor expression. Hypoxic macrophages generated productive immune synapses with CD8 T cells that were more efficient for activation of TCR/CD3epsilon, CD3zeta and linker for activation of T cell phosphorylation, and T cell cytokine production. In addition, hypoxic macrophages bound opsonized particles with a higher efficiency, increasing their phagocytic uptake, through the up-regulated expression of phagocytic receptors. These hypoxia-increased immune responses were markedly reduced in HIF-1alpha- and in IFN-gamma-silenced macrophages, indicating a link between HIF-1alpha and IFN-gamma in the functional responses of macrophages to hypoxia. Our data underscore an important role of hypoxia in the activation of macrophage cytokine production, Ag-presenting activity, and phagocytic activity due to an HIF-1alpha-mediated increase in IFN-gamma levels.


Assuntos
Apresentação de Antígeno/imunologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Hipóxia/imunologia , Interferon gama/biossíntese , Macrófagos/imunologia , Oxigênio/metabolismo , Fagocitose/imunologia , Animais , Sequência de Bases , Linhagem Celular , Células Cultivadas , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/deficiência , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Interferon gama/genética , Interferon gama/metabolismo , Macrófagos/metabolismo , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Ligação Proteica/imunologia , Elementos de Resposta/imunologia
5.
Sci Rep ; 10(1): 1175, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31980715

RESUMO

Thrombospondin-1 (TSP-1) is a multifunctional matrix protein with antitumor activities due in part to its ability to inhibit angiogenesis, which in turn contributes to determine the fate of many tumours. Previous studies have shown that TSP-1 expression supports normal kidney angiostasis, and decreased TSP-1 levels contribute to the angiogenic phenotype of renal cell carcinomas (RCC). The loss of the von Hippel-Lindau tumour suppressor gene (VHL) in these tumours favours stabilization of the Hypoxia Inducible Factors (HIF), which in turn contribute to adapt tumour cells to hostile environments promoting tumour progression. However, HIF-independent regulation of certain genes might also be involved. We have previously shown that TSP-1 is regulated in hypoxia in clear cell RCC (ccRCC) in a HIF-independent manner; however, the effect of VHL protein (pVHL) on TSP-1 expression has not been evaluated. Our results proved that pVHL loss or mutation in its alpha or beta domain significantly decreased TSP-1 levels in ccRCC in a HIF-independent manner. Furthermore, this regulation proved to be important for ccRCC cells behaviour showing that decreased TSP-1 levels rendered ccRCC cells more migratory. This data substantiates a unique regulation pattern for TSP-1 in a pVHL-dependent manner, which may be relevant in the aggressiveness of ccRCC.


Assuntos
Carcinoma de Células Renais/patologia , Regulação Neoplásica da Expressão Gênica , Neoplasias Renais/patologia , Proteínas de Neoplasias/fisiologia , Trombospondina 1/biossíntese , Proteína Supressora de Tumor Von Hippel-Lindau/fisiologia , Linhagem Celular Tumoral , Movimento Celular , Meios de Cultura Livres de Soro , Regulação para Baixo , Técnicas de Silenciamento de Genes , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Junções Intercelulares/metabolismo , Mutação de Sentido Incorreto , Invasividade Neoplásica , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Domínios Proteicos/genética , Interferência de RNA , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Neoplásico/biossíntese , RNA Neoplásico/genética , RNA Interferente Pequeno/genética , Trombospondina 1/genética , Proteína Supressora de Tumor Von Hippel-Lindau/antagonistas & inibidores , Proteína Supressora de Tumor Von Hippel-Lindau/genética
6.
J Clin Invest ; 130(12): 6290-6300, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32784290

RESUMO

SARS-CoV-2 is responsible for the development of coronavirus disease 2019 (COVID-19) in infected individuals, who can either exhibit mild symptoms or progress toward a life-threatening acute respiratory distress syndrome (ARDS). Exacerbated inflammation and dysregulated immune responses involving T and myeloid cells occur in COVID-19 patients with severe clinical progression. However, the differential contribution of specific subsets of dendritic cells and monocytes to ARDS is still poorly understood. In addition, the role of CD8+ T cells present in the lung of COVID-19 patients and relevant for viral control has not been characterized. Here, we have studied the frequencies and activation profiles of dendritic cells and monocytes present in the blood and lung of COVID-19 patients with different clinical severity in comparison with healthy individuals. Furthermore, these subpopulations and their association with antiviral effector CD8+ T cell subsets were also characterized in lung infiltrates from critical COVID-19 patients. Our results indicate that inflammatory transitional and nonclassical monocytes and CD1c+ conventional dendritic cells preferentially migrate from blood to lungs in patients with severe COVID-19. Thus, this study increases the knowledge of specific myeloid subsets involved in the pathogenesis of COVID-19 disease and could be useful for the design of therapeutic strategies for fighting SARS-CoV-2 infection.


Assuntos
Antígenos CD1/imunologia , COVID-19/imunologia , Movimento Celular/imunologia , Glicoproteínas/imunologia , Pulmão/imunologia , Monócitos/imunologia , Síndrome do Desconforto Respiratório/imunologia , SARS-CoV-2/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , COVID-19/patologia , Células Dendríticas/imunologia , Células Dendríticas/patologia , Feminino , Humanos , Pulmão/patologia , Masculino , Pessoa de Meia-Idade , Monócitos/classificação , Monócitos/patologia , Índice de Gravidade de Doença
7.
J Cell Biol ; 157(3): 509-19, 2002 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-11980922

RESUMO

Thrombospondin (TSP)-1 has been reported to modulate T cell behavior both positively and negatively. We found that these opposing responses arise from interactions of TSP1 with two different T cell receptors. The integrin alpha4beta1 recognizes an LDVP sequence in the NH2-terminal domain of TSP1 and was required for stimulation of T cell adhesion, chemotaxis, and matrix metalloproteinase gene expression by TSP1. Recognition of TSP1 by T cells depended on the activation state of alpha4beta1 integrin, and TSP1 inhibited interaction of activated alpha4beta1 integrin on T cells with its counter receptor vascular cell adhesion molecule-1. The alpha4beta1 integrin recognition site is conserved in TSP2. A recombinant piece of TSP2 containing this sequence replicated the alpha4beta1 integrin-dependent activities of TSP1. The beta1 integrin recognition sites in TSP1, however, were neither necessary nor sufficient for inhibition of T cell proliferation and T cell antigen receptor signaling by TSP1. A second TSP1 receptor, CD47, was not required for some stimulatory responses to TSP1 but played a significant role in its T cell antigen receptor antagonist and antiproliferative activities. Modulating the relative expression or function of these two TSP receptors could therefore alter the direction or magnitude of T cell responses to TSPs.


Assuntos
Antígenos CD/fisiologia , Proteínas de Transporte/fisiologia , Integrinas/fisiologia , Receptores de Retorno de Linfócitos/fisiologia , Linfócitos T/fisiologia , Trombospondina 1/fisiologia , Antígenos CD/metabolismo , Sítios de Ligação , Antígeno CD47 , Proteínas de Transporte/metabolismo , Divisão Celular , Células Cultivadas , Quimiotaxia de Leucócito/fisiologia , Proteoglicanas de Heparan Sulfato/metabolismo , Heparina/metabolismo , Humanos , Integrina alfa4beta1 , Integrinas/metabolismo , Células Jurkat , Receptores de Retorno de Linfócitos/metabolismo , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Trombospondina 1/genética , Trombospondina 1/metabolismo , Trombospondinas/genética , Trombospondinas/metabolismo
8.
Front Immunol ; 10: 1268, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31214201

RESUMO

Accumulating evidence on the role of Thrombospondin-1 (TSP-1) in the immune response has emerged during the last years. In spite of the importance of TSP-1 not only as anti-angiogenic factor but also as an immunomodulatory molecule, studies on the role of TSP-1 in psoriasis have been neglected. TSP-1 and CD47 expression were analyzed in skin samples from psoriasis patients and control subjects using RT-PCR and immunofluorescence. Expression of these molecules was also evaluated in peripheral blood CD4+ T cells, moDCs, and circulating primary DCs. The functional role of TSP-1/CD47 signaling axis in psoriasis was assessed in Th17 and Treg differentiation assays. Additionally, small interfering RNA assays specific to TSP-1 were performed in CD4+ T cells and monocyte derived DC to specifically evaluate the function of this protein. Lesional skin of psoriasis patients expressed lower TSP-1 and CD47 mRNA levels compared to non-lesional skin or skin from controls. Immunofluorescence staining revealed decreased expression of CD47 in CD45+ dermal cells from psoriasis samples compared to control subjects. Peripheral CD4+ T cells and circulating primary DCs from psoriasis also expressed lower levels of CD47 compared to controls. Although no significant differences were detected in TSP-1 expression in CD4+ T cells and moDCs between patients and controls, TSP-1 expression in psoriasis patients inversely correlated with disease activity evaluated by the Psoriasis Area and Index Activity. Furthermore, exogenous TSP-1 inhibited Th17 differentiation and stimulated the differentiation of CD4+ T cells toward Treg cells. Furthermore, RNA interference specific for TSP-1 confirmed the role of this molecule as a negative regulator of T cell activation. Because of the impact of TSP-1/CD47 signaling axis in Th17 and Treg differentiation, a dysregulated expression of these molecules in the immune cells from psoriasis patients may favor the exacerbated inflammatory response in this disease.


Assuntos
Antígeno CD47/metabolismo , Psoríase/etiologia , Psoríase/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Células Th17/imunologia , Células Th17/metabolismo , Trombospondina 1/metabolismo , Biomarcadores , Antígeno CD47/genética , Diferenciação Celular , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Suscetibilidade a Doenças , Expressão Gênica , Humanos , Imunofenotipagem , Ativação Linfocitária/imunologia , Ligação Proteica , Psoríase/patologia , Pele/imunologia , Pele/metabolismo , Pele/patologia , Linfócitos T Reguladores/citologia , Células Th17/citologia
9.
Matrix Biol ; 27(4): 339-51, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18226512

RESUMO

Conformational changes induced in thrombospondin-1 by removal of calcium regulate interactions with some ligands of its N-modules. Because calcium binds primarily to elements of the C-terminal signature domain of thrombospondin-1, which are distant from the N-modules, such regulation was unexpected. To clarify the mechanism for this regulation, we compared ligand binding to the N-modules of thrombospondin-1 in the full-length protein and recombinant trimeric thrombospondin-1 truncated prior to the signature domain. Three monoclonal antibodies were identified that recognize the N-modules, two of which exhibit calcium-dependent binding to native thrombospondin-1 but not to the truncated trimeric protein. These antibodies or calcium selectively modulate interactions of fibronectin, heparin, sulfatide, alpha3beta1 integrin, tumor necrosis factor-alpha-stimulated gene-6 protein, and, to a lesser extent, alpha4beta1 integrin with native thrombospondin-1 but not with the truncated protein. These results indicate connectivity between calcium binding sites in the C-terminal signature domain and the N-modules of thrombospondin-1 that regulates ligand binding and functional activities of the N-modules.


Assuntos
Cálcio/metabolismo , Trombospondina 1/imunologia , Trombospondina 1/metabolismo , Anticorpos/imunologia , Cálcio/química , Cátions Bivalentes/química , Adesão Celular , Moléculas de Adesão Celular/metabolismo , Epitopos/imunologia , Fibronectinas/metabolismo , Humanos , Imunoquímica , Integrina alfa3beta1/metabolismo , Ligantes , Ligação Proteica
10.
Cancer Res ; 66(3): 1553-60, 2006 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-16452212

RESUMO

Inactivation of the von Hippel-Lindau (VHL) tumor suppressor gene is responsible for the development of renal cell cancers (RCC), pheochromocytomas, and tumors in other organs. The best known function of VHL protein (VHL) is to target the hypoxia-inducible factor (HIF) for proteasome degradation. VHL is also required for the establishment of an epithelial-like cell shape in otherwise fibroblastic-like RCC cell lines. However, the underlying mechanisms and whether this is linked to HIF remain undetermined. Because the breakage of intercellular junctions induces a fibroblastic-like phenotype in multiple cancer cell models, we hypothesized that VHL may be required for the assembly of intercellular junctions in RCC cells. Our experiments showed that VHL in RCC cell lines is necessary for the normal organization of adherens and tight intercellular junctions, the maintenance of cell polarity, and control of paracellular permeability. Additionally, 786-O cells reconstituted with wild-type VHL and with a constitutively active form of HIF-2alpha did not reproduce any of the phenotypic alterations of VHL-negative cells. In summary, we show that VHL inactivation in RCC cells disrupts intercellular junctions and cell shape through HIF-independent events, supporting the concept that VHL has additional functions beside its role in the regulation of HIF.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Carcinoma de Células Renais/patologia , Junções Intercelulares/patologia , Neoplasias Renais/patologia , Proteína Supressora de Tumor Von Hippel-Lindau/fisiologia , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Linhagem Celular Tumoral , Fibronectinas/antagonistas & inibidores , Fibronectinas/metabolismo , Humanos , Junções Intercelulares/metabolismo , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Transfecção , Proteína Supressora de Tumor Von Hippel-Lindau/biossíntese , Proteína Supressora de Tumor Von Hippel-Lindau/genética
12.
Antioxid Redox Signal ; 27(12): 802-822, 2017 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-28715969

RESUMO

SIGNIFICANCE: The extracellular matrix (ECM) is an essential modulator of cell behavior that influences tissue organization. It has a strong relevance in homeostasis and translational implications for human disease. In addition to ECM structural proteins, matricellular proteins are important regulators of the ECM that are involved in a myriad of different pathologies. Recent Advances: Biochemical studies, animal models, and study of human diseases have contributed to the knowledge of molecular mechanisms involved in remodeling of the ECM, both in homeostasis and disease. Some of them might help in the development of new therapeutic strategies. This review aims to review what is known about some of the most studied matricellular proteins and their regulation by hypoxia and redox signaling, as well as the pathological implications of such regulation. CRITICAL ISSUES: Matricellular proteins have complex regulatory functions and are modulated by hypoxia and redox signaling through diverse mechanisms, in some cases with controversial effects that can be cell or tissue specific and context dependent. Therefore, a better understanding of these regulatory processes would be of great benefit and will open new avenues of considerable therapeutic potential. FUTURE DIRECTIONS: Characterizing the specific molecular mechanisms that modulate matricellular proteins in pathological processes that involve hypoxia and redox signaling warrants additional consideration to harness the potential therapeutic value of these regulatory proteins. Antioxid. Redox Signal. 27, 802-822.


Assuntos
Proteínas da Matriz Extracelular/metabolismo , Matriz Extracelular/metabolismo , Animais , Hipóxia Celular , Regulação da Expressão Gênica , Homeostase , Humanos , Oxirredução , Transdução de Sinais
13.
Cardiovasc Res ; 113(8): 858-868, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28472457

RESUMO

Matricellular proteins are secreted molecules that have affinities for both extracellular matrix and cell surface receptors. Through interaction with structural proteins and the cells that maintain the matrix these proteins can alter matrix strength. Matricellular proteins exert control on cell activity primarily through engagement of membrane receptors that mediate outside-in signaling. An example of this group is thrombospondin-1 (TSP1), first identified as a component of the secreted product of activated platelets. As a result, TSP1 was initially studied in relation to coagulation, growth factor signaling and angiogenesis. More recently, TSP1 has been found to alter the effects of the gaseous transmitter nitric oxide (NO). This latter capacity has provided motivation to study TSP1 in diseases associated with loss of NO signaling as observed in cardiovascular disease and pulmonary hypertension (PH). PH is characterized by progressive changes in the pulmonary vasculature leading to increased resistance to blood flow and subsequent right heart failure. Studies have linked TSP1 to pre-clinical animal models of PH and more recently to clinical PH. This review will provide analysis of the vascular and non-vascular effects of TSP1 that contribute to PH, the experimental and translational studies that support a role for TSP1 in disease promotion and frame the relevance of these findings to therapeutic strategies.


Assuntos
Antígeno CD47/metabolismo , Hipertensão Pulmonar/metabolismo , Óxido Nítrico/metabolismo , Transdução de Sinais/fisiologia , Trombospondina 1/metabolismo , Animais , Humanos , Fluxo Sanguíneo Regional/fisiologia
14.
J Cell Biol ; 216(3): 835-847, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28235946

RESUMO

Vascular cell adhesion molecule 1 (VCAM-1) is an adhesion molecule assigned to the activated endothelium mediating immune cells adhesion and extravasation. However, its expression in renal carcinomas inversely correlates with tumor malignancy. Our experiments in clear cell renal cell carcinoma (ccRCC) cell lines demonstrated that von Hippel Lindau (VHL) loss, hypoxia, or PHD (for prolyl hydroxylase domain-containing proteins) inactivation decreased VCAM-1 levels through a transcriptional mechanism that was independent of the hypoxia-inducible factor and dependent on the nuclear factor κB signaling pathway. Conversely, VHL expression leads to high VCAM-1 levels in ccRCC, which in turn leads to better outcomes, possibly by favoring antitumor immunity through VCAM-1 interaction with the α4ß1 integrin expressed in immune cells. Remarkably, in ccRCC human samples with VHL nonmissense mutations, we observed a negative correlation between VCAM-1 levels and ccRCC stage, microvascular invasion, and symptom presentation, pointing out the clinical value of VCAM-1 levels as a marker of ccRCC progression.


Assuntos
Carcinoma de Células Renais/imunologia , Neoplasias Renais/genética , Neoplasias Renais/imunologia , NF-kappa B/genética , Molécula 1 de Adesão de Célula Vascular/genética , Doença de von Hippel-Lindau/imunologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/imunologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/imunologia , Carcinoma de Células Renais/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/imunologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/imunologia , Integrina alfa4beta1/genética , Integrina alfa4beta1/imunologia , Mutação/genética , Mutação/imunologia , NF-kappa B/imunologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Transcrição Gênica/genética , Transcrição Gênica/imunologia , Molécula 1 de Adesão de Célula Vascular/imunologia , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/imunologia , Doença de von Hippel-Lindau/genética
15.
Cardiovasc Res ; 113(1): 15-29, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27742621

RESUMO

AIMS: Thrombospondin-1 (TSP1) is a ligand for CD47 and TSP1-/- mice are protected from pulmonary hypertension (PH). We hypothesized the TSP1-CD47 axis is upregulated in human PH and promotes pulmonary arterial vasculopathy. METHODS AND RESULTS: We analyzed the molecular signature and functional response of lung tissue and distal pulmonary arteries (PAs) from individuals with (n = 23) and without (n = 16) PH. Compared with controls, lungs and distal PAs from PH patients showed induction of TSP1-CD47 and endothelin-1/endothelin A receptor (ET-1/ETA) protein and mRNA. In control PAs, treatment with exogenous TSP1 inhibited vasodilation and potentiated vasoconstriction to ET-1. Treatment of diseased PAs from PH patients with a CD47 blocking antibody improved sensitivity to vasodilators. Hypoxic wild type (WT) mice developed PH and displayed upregulation of pulmonary TSP1, CD47, and ET-1/ETA concurrent with down regulation of the transcription factor cell homolog of the v-myc oncogene (cMyc). In contrast, PH was attenuated in hypoxic CD47-/- mice while pulmonary TSP1 and ET-1/ETA were unchanged and cMyc was overexpressed. In CD47-/- pulmonary endothelial cells cMyc was increased and ET-1 decreased. In CD47+/+ cells, forced induction of cMyc suppressed ET-1 transcript, whereas suppression of cMyc increased ET-1 signaling. Furthermore, disrupting TSP1-CD47 signaling in pulmonary smooth muscle cells abrogated ET-1-stimulated hypertrophy. Finally, a CD47 antibody given 2 weeks after monocrotaline challenge in rats upregulated pulmonary cMyc and improved aberrations in PH-associated cardiopulmonary parameters. CONCLUSIONS: In pre-clinical models of PH CD47 targets cMyc to increase ET-1 signaling. In clinical PH TSP1-CD47 is upregulated, and in both, contributes to pulmonary arterial vasculopathy and dysfunction.


Assuntos
Pressão Arterial , Antígeno CD47/metabolismo , Hipertensão Pulmonar/metabolismo , Artéria Pulmonar/metabolismo , Transdução de Sinais , Trombospondina 1/metabolismo , Adulto , Idoso , Animais , Antígeno CD47/genética , Estudos de Casos e Controles , Linhagem Celular , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Endotelina-1/metabolismo , Feminino , Predisposição Genética para Doença , Humanos , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/fisiopatologia , Hipertensão Pulmonar/prevenção & controle , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Fenótipo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Artéria Pulmonar/fisiopatologia , Interferência de RNA , Ratos , Trombospondina 1/deficiência , Trombospondina 1/genética , Transfecção , Regulação para Cima , Vasoconstrição , Vasodilatação , Adulto Jovem
16.
Circ Res ; 94(4): 462-70, 2004 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-14699013

RESUMO

We examined the function of alpha4beta1 integrin in angiogenesis and in mediating endothelial cell responses to the angiogenesis modulators, thrombospondin-1 and thrombospondin-2. Alpha4beta1 supports adhesion of venous endothelial cells but not of microvascular endothelial cells on immobilized thrombospondin-1, vascular cell adhesion molecule-1, or recombinant N-terminal regions of thrombospondin-1 and thrombospondin-2. Chemotactic activities of this region of thrombospondin-1 and thrombospondin-2 are also mediated by alpha4beta1, whereas antagonism of fibroblast growth factor-2-stimulated chemotaxis is not mediated by this region. Immobilized N-terminal regions of thrombospondin-1 and thrombospondin-2 promote endothelial cell survival and proliferation in an alpha4beta1-dependent manner. Soluble alpha4beta1 antagonists inhibit angiogenesis in the chick chorioallantoic membrane and neovascularization of mouse muscle explants. The latter inhibition is thrombospondin-1-dependent and not observed in explants from thrombospondin-1-/- mice. Antagonizing alpha4beta1 may in part block proangiogenic activities of thrombospondin-1 and thrombospondin-2, because N-terminal regions of thrombospondin-1 and thrombospondin-2 containing the alpha4beta1 binding sequence stimulate angiogenesis in vivo. Therefore, alpha4beta1 is an important endothelial cell receptor for mediating motility and proliferative responses to thrombospondins and for modulation of angiogenesis.


Assuntos
Endotélio Vascular/efeitos dos fármacos , Integrina alfa4beta1/fisiologia , Neovascularização Fisiológica/efeitos dos fármacos , Trombospondina 1/farmacologia , Trombospondinas/farmacologia , Animais , Capilares/citologia , Adesão Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Quimiotaxia/efeitos dos fármacos , Fator 2 de Crescimento de Fibroblastos/antagonistas & inibidores , Humanos , Veia Ilíaca , Pulmão , Camundongos , Camundongos Knockout , Especificidade de Órgãos , Fragmentos de Peptídeos/farmacologia , Estrutura Terciária de Proteína , Interferência de RNA , RNA Mensageiro/biossíntese , Pele , Trombospondina 1/química , Trombospondina 1/deficiência , Trombospondinas/biossíntese , Trombospondinas/química , Trombospondinas/genética , Veias Umbilicais/citologia , Molécula 1 de Adesão de Célula Vascular/farmacologia
17.
Cardiovasc Res ; 109(1): 115-30, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26503986

RESUMO

AIMS: Hypoxic conditions stimulate pulmonary vasoconstriction and vascular remodelling, both pathognomonic changes in pulmonary arterial hypertension (PAH). The secreted protein thrombospondin-1 (TSP1) is involved in the maintenance of lung homeostasis. New work identified a role for TSP1 in promoting PAH. Nonetheless, it is largely unknown how hypoxia regulates TSP1 in the lung and whether this contributes to pathological events during PAH. METHODS AND RESULTS: In cell and animal experiments, we found that hypoxia induces TSP1 in lungs, pulmonary artery smooth muscle cells and endothelial cells, and pulmonary fibroblasts. Using a murine model of constitutive hypoxia, gene silencing, and luciferase reporter experiments, we found that hypoxia-mediated induction of pulmonary TSP1 is a hypoxia-inducible factor (HIF)-2α-dependent process. Additionally, hypoxic tsp1(-/-) pulmonary fibroblasts and pulmonary artery smooth muscle cell displayed decreased migration compared with wild-type (WT) cells. Furthermore, hypoxia-mediated induction of TSP1 destabilized endothelial cell-cell interactions. This provides genetic evidence that TSP1 contributes to vascular remodelling during PAH. Expanding cell data to whole tissues, we found that, under hypoxia, pulmonary arteries (PAs) from WT mice had significantly decreased sensitivity to acetylcholine (Ach)-stimulated endothelial-dependent vasodilation. In contrast, hypoxic tsp1(-/-) PAs retained sensitivity to Ach, mediated in part by TSP1 regulation of pulmonary Kv channels. Translating these preclinical studies, we find in the lungs from individuals with end-stage PAH, both TSP1 and HIF-2α protein expression increased in the pulmonary vasculature compared with non-PAH controls. CONCLUSIONS: These findings demonstrate that HIF-2α is clearly implicated in the TSP1 pulmonary regulation and provide new insights on its contribution to PAH-driven vascular remodelling and vasoconstriction.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Trombospondina 1/fisiologia , Remodelação Vascular , Vasoconstrição , Animais , Hipóxia Celular , Movimento Celular , Células Cultivadas , Canal de Potássio Kv1.5/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas , Elementos de Resposta , Trombospondina 1/genética
18.
Matrix Biol ; 24(2): 110-23, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15890262

RESUMO

We have reexamined the role of endogenous thrombospondin-1 (TSP1) in growth and motility of vascular smooth muscle cells (SMCs). Based on the ability of aortic-derived SMCs isolated from TSP1 null mice and grown in the absence of exogenous TSP1 to grow at comparable rates and to a slightly higher density than equivalent cells from wild-type mice, TSP1 is not necessary for their growth. Low concentrations of exogenous TSP1 stimulate growth of TSP1 null SMCs, but higher doses of TSP1 or its C-terminal domain are inhibitory. However, SMCs from TSP1 null mice are selectively deficient in chemotactic and proliferative responses to platelet-derived growth factor and in outgrowth in three-dimensional cultures. Recombinant portions of the N- and C-terminal domains of TSP1 stimulate SMC chemotaxis through different integrin receptors. Based on these data, the relative deficiency in SMC outgrowth during an ex vivo angiogenic response of muscle tissue from TSP1 null mice is probably due to restriction of platelet-derived growth factor dependent SMC migration and/or proliferation.


Assuntos
Músculo Liso Vascular/citologia , Fator de Crescimento Derivado de Plaquetas/fisiologia , Trombospondina 1/fisiologia , Animais , Aorta/citologia , Aorta/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Células Cultivadas , Quimiotaxia , Técnicas de Cocultura , Relação Dose-Resposta a Droga , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Humanos , Imunoensaio , Imuno-Histoquímica , Fator de Crescimento Insulin-Like I/metabolismo , Pulmão/citologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Genéticos , Miócitos de Músculo Liso , Neovascularização Patológica , Peptídeos/química , Fator de Crescimento Derivado de Plaquetas/química , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Trombospondina 1/química , Fatores de Tempo
19.
Curr Pharm Des ; 11(7): 849-66, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15777239

RESUMO

Specific antagonists have been successfully developed for several different integrins. Clinical trials have been initiated to study therapeutic uses of these inhibitors in cancer, thrombosis, and inflammatory diseases. Most efforts to date have focused on the platelet integrin alphaIIbbeta3, endothelial alphavbeta3, and the leukocyte integrin alpha4beta1. However, the integrin family contains additional members with interesting tissue specificities and functional properties that could also be useful molecular targets for disease intervention. In many cases, specific recognition motifs for these integrins have not been identified, which has precluded development of specific antagonists. Our recent studies of thrombospondin-1 and thrombospondin-2 recognition by integrins have revealed novel motifs for alpha3beta1 and alpha6beta1 integrins as well as new motifs recognized by the well studied alpha4beta1 integrin. These three integrins play distinct roles in angiogenesis and its modulation by thrombospondins. This review will discuss recent insights into the specificities of alpha3beta1 and alpha6beta1 integrins, their functions in angiogenesis, and potential applications for antagonists of these integrins and of alpha4beta1 to control pathological angiogenesis and other diseases.


Assuntos
Integrinas/antagonistas & inibidores , Trombospondinas/química , Trombospondinas/farmacologia , Sequência de Aminoácidos , Inibidores da Angiogênese/farmacologia , Animais , Sítios de Ligação , Antígenos CD36/efeitos dos fármacos , Humanos , Neovascularização Fisiológica/efeitos dos fármacos , Neovascularização Fisiológica/fisiologia , Ligação Proteica , Trombospondinas/fisiologia
20.
Sci Rep ; 2: 788, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23145312

RESUMO

Thrombospondin-1 is a matricellular protein with potent antitumour activities, the levels of which determine the fate of many different tumours, including renal carcinomas. However, the factors that regulate this protein remain unclear. In renal carcinomas, hypoxic conditions enhance the expression of angiogenic factors that help adapt tumour cells to their hostile environment. Therefore, we hypothesized that anti-angiogenic factors should correspondingly be dampened. Indeed, we found that hypoxia decreased the thrombospondin-1 protein in several clear cell renal carcinoma cell lines (ccRCC), although no transcriptional regulation was observed. Furthermore, we proved that hypoxia stimulates multiple signals that independently contribute to diminish thrombospondin-1 in ccRCC, which include a decrease in the activity of oxygen-dependent prolylhydroxylases (PHDs) and activation of the PI3K/Akt signalling pathway. In addition, thrombospondin-1 regulation in hypoxia proved to be important for ccRCC cell migration and invasion.


Assuntos
Comunicação Autócrina , Carcinoma de Células Renais , Movimento Celular , Trombospondina 1 , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Hipóxia Celular , Linhagem Celular Tumoral , Movimento Celular/genética , Humanos , Redes e Vias Metabólicas , Invasividade Neoplásica/genética , Proteína Oncogênica v-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Trombospondina 1/genética , Trombospondina 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA