Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38305495

RESUMO

OBJECTIVE: To define the functional relevance of H19 X-linked co-expressed lncRNA (H19X) in endothelial cell (EC) activation as a key process in systemic sclerosis (SSc) vasculopathy. METHODS: H19X expression in SSc skin biopsies was analyzed from single cell RNA sequencing (scRNA-seq) data. Differential expression and pathway enrichment analysis between cells expressing (H19Xpos) and non expressing H19X (H19Xneg) cells was performed. H19X function was investigated in human dermal microvascular EC (HDMECs) by silencing. H19X and EC adhesion molecules levels were analyzed by RT-qPCR and Western Blot after stimulation with proinflammatory cytokines. Cytoskeletal rearrangements were analyzed by fluorescent staining. Endothelial adhesion was evaluated by co-culture of HDMECs and fluorescent labelled peripheral blood mononuclear cells (PBMCs). Shedding VCAM1 was evaluated by ELISA on HDMEC supernatant. RESULTS: scRNA-seq showed significant upregulation of H19X in SSc compared with healthy EC. In HDMEC, H19X was consistently induced by type I and II interferons. H19X knockdown lead to a significant decrease of the mRNA of several adhesion molecules. Particularly, vascular cell adhesion protein 1 (VCAM1) was significantly reduced at protein and mRNA levels. Co-expression analysis of the scRNA-seq data confirmed a higher expression of VCAM1 in (H19Xpos) EC. EC were also strongly associated with the 'cell adhesion molecule' pathway. Moreover, VCAM1 downstream pathway displayed less activation following H19X knockdown. Contractility of HDMEC, PBMC adhesion to HDMEC and VCAM1 shedding were also reduced following H19X knockdown. CONCLUSIONS: lncRNA H19X may contribute to EC activation in SSc vasculopathy, acting as a regulator of expression of adhesion molecules in EC.

2.
Biomedicines ; 11(12)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38137409

RESUMO

BACKGROUND: Individual functions of members of the bromodomain (BRD) and extra-terminal (BET) protein family underlying the anti-inflammatory effects of BET inhibitors in rheumatoid arthritis (RA) are incompletely understood. Here, we aimed to analyze the regulatory functions of BRD3, an understudied member of the BET protein family, in RA synovial fibroblasts (FLS). METHODS: BRD3 was silenced in FLS prior to stimulation with TNF. Alternatively, FLS were treated with I-BET. Transcriptomes were analyzed by RNA sequencing (RNAseq), followed by pathway enrichment analysis. We confirmed results for selective target genes by real-time PCR, ELISA, and Western blotting. RESULTS: BRD3 regulates the expression of several cytokines and chemokines in FLS, and positively correlates with inflammatory scores in the RA synovium. In addition, RNAseq pointed to a profound role of BRD3 in regulating FLS proliferation, metabolic adaption, and response to stress, including oxidative stress, and autophagy. CONCLUSIONS: BRD3 acts as an upstream regulatory factor that integrates the response to inflammatory stimuli and stress conditions in FLS and executes many functions of BET proteins that have previously been identified using pan-BET inhibitors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA