Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 95(17): e0052321, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34132571

RESUMO

Despite tight genetic compression, viral genomes are often organized into functional gene clusters, a modular structure that might favor their evolvability. This has greatly facilitated biotechnological developments such as the recombinant adeno-associated virus (AAV) systems for gene therapy. Following this lead, we endeavored to engineer the related insect parvovirus Junonia coenia densovirus (JcDV) to create addressable vectors for insect pest biocontrol. To enable safer manipulation of capsid mutants, we translocated the nonstructural (ns) gene cluster outside the viral genome. To our dismay, this yielded a virtually nonreplicable clone. We linked the replication defect to an unexpected modularity breach, as ns translocation truncated the overlapping 3' untranslated region (UTR) of the capsid transcript (vp). We found that the native vp 3' UTR is necessary for high-level VP production but that decreased expression does not adversely impact the expression of NS proteins, which are known replication effectors. As nonsense vp mutations recapitulate the replication defect, VP proteins appear to be directly implicated in the replication process. Our findings suggest intricate replication-encapsidation couplings that favor the maintenance of genetic integrity. We discuss possible connections with an intriguing cis-packaging phenomenon previously observed in parvoviruses whereby capsids preferentially package the genome from which they were expressed. IMPORTANCE Densoviruses could be used as biological control agents to manage insect pests. Such applications require an in-depth biological understanding and associated molecular tools. However, the genomes of these viruses remain difficult to manipulate due to poorly tractable secondary structures at their extremities. We devised a construction strategy that enables precise and efficient molecular modifications. Using this approach, we endeavored to create a split clone of Junonia coenia densovirus (JcDV) that can be used to safely study the impact of capsid mutations on host specificity. Our original construct proved to be nonfunctional. Fixing this defect led us to uncover that capsid proteins and their correct expression are essential for continued rolling-hairpin replication. This points to an intriguing link between replication and packaging, which might be shared with related viruses. This serendipitous discovery illustrates the power of synthetic biology approaches to advance our knowledge of biological systems.


Assuntos
Proteínas do Capsídeo/metabolismo , Densovirus/fisiologia , Genoma Viral , Infecções por Parvoviridae/virologia , Spodoptera/virologia , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Regiões 3' não Traduzidas/genética , Animais , Proteínas do Capsídeo/genética , Vetores Genéticos , Controle Biológico de Vetores , Proteínas não Estruturais Virais/genética
2.
Annu Rev Genet ; 44: 141-66, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20707672

RESUMO

Integrons are genetic elements able to acquire and rearrange open reading frames (ORFs) embedded in gene cassette units and convert them to functional genes by ensuring their correct expression. They were originally identified as a mechanism used by Gram-negative bacteria to collect antibiotic resistance genes and express multiple resistance phenotypes in synergy with transposons. More recently, their role has been broadened with the discovery of chromosomal integron (CI) structures in the genomes of hundreds of bacterial species. This review focuses on the resources carried in these elements, on their unique recombination mechanisms, and on the different mechanisms controlling the cassette dynamics. We discuss the role of the toxin/antitoxin (TA) cassettes for the stabilization of the large cassette arrays carried in the larger CIs, known as superintegrons. Finally, we explore the central role played by single-stranded DNA in the integron cassette dynamics in light of the recent discovery that the integron integrase expression is controlled by the SOS response.


Assuntos
Bactérias/genética , Integrons , Antitoxinas/genética , Toxinas Bacterianas/genética
3.
Biotechnol Bioeng ; 115(1): 184-191, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28898391

RESUMO

Synthetic DNA design needs to harness the many information layers embedded in a DNA string. We previously developed the Evolutionary Landscape Painter (ELP), an algorithm that exploits the degeneracy of the code to increase protein evolvability. Here, we have used ELP to recode the integron integrase gene (intI1) in two alternative alleles. Although synonymous, both alleles yielded less IntI1 protein and were less active in recombination assays than intI1. We spliced the three alleles and mapped the activity decrease to the beginning of alternative sequences. Mfold predicted the presence of more stable secondary structures in the alternative genes. Using synonymous mutations, we decreased their stability and recovered full activity. Following a design-build-test approach, we have now updated ELP to consider such structures and provide streamlined alternative sequences. Our results support the possibility of modulating gene activity through the ad hoc design of 5' secondary structures in synthetic genes.


Assuntos
Evolução Molecular Direcionada/métodos , Integrases/biossíntese , Integrases/genética , Biossíntese de Proteínas , Integrases/química , Integrons/genética , Modelos Moleculares , Conformação Proteica
4.
Nat Methods ; 10(4): 354-60, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23474465

RESUMO

An inability to reliably predict quantitative behaviors for novel combinations of genetic elements limits the rational engineering of biological systems. We developed an expression cassette architecture for genetic elements controlling transcription and translation initiation in Escherichia coli: transcription elements encode a common mRNA start, and translation elements use an overlapping genetic motif found in many natural systems. We engineered libraries of constitutive and repressor-regulated promoters along with translation initiation elements following these definitions. We measured activity distributions for each library and selected elements that collectively resulted in expression across a 1,000-fold observed dynamic range. We studied all combinations of curated elements, demonstrating that arbitrary genes are reliably expressed to within twofold relative target expression windows with ∼93% reliability. We expect the genetic element definitions validated here can be collectively expanded to create collections of public-domain standard biological parts that support reliable forward engineering of gene expression at genome scales.


Assuntos
Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Fatores de Iniciação em Procariotos/metabolismo , Transcrição Gênica , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Biblioteca Gênica , Engenharia Genética , Genoma Bacteriano , Fatores de Iniciação em Procariotos/genética , Regiões Promotoras Genéticas/genética , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
5.
Nat Methods ; 10(4): 347-53, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23474467

RESUMO

The practice of engineering biology now depends on the ad hoc reuse of genetic elements whose precise activities vary across changing contexts. Methods are lacking for researchers to affordably coordinate the quantification and analysis of part performance across varied environments, as needed to identify, evaluate and improve problematic part types. We developed an easy-to-use analysis of variance (ANOVA) framework for quantifying the performance of genetic elements. For proof of concept, we assembled and analyzed combinations of prokaryotic transcription and translation initiation elements in Escherichia coli. We determined how estimation of part activity relates to the number of unique element combinations tested, and we show how to estimate expected ensemble-wide part activity from just one or two measurements. We propose a new statistic, biomolecular part 'quality', for tracking quantitative variation in part performance across changing contexts.


Assuntos
Bioengenharia/métodos , Escherichia coli/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo , Animais , Proteínas de Bactérias , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Biblioteca Gênica , Iniciação Traducional da Cadeia Peptídica , Fatores de Iniciação em Procariotos/metabolismo , Transcrição Gênica
6.
Proc Natl Acad Sci U S A ; 110(34): 14024-9, 2013 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-23924614

RESUMO

The inability to predict heterologous gene expression levels precisely hinders our ability to engineer biological systems. Using well-characterized regulatory elements offers a potential solution only if such elements behave predictably when combined. We synthesized 12,563 combinations of common promoters and ribosome binding sites and simultaneously measured DNA, RNA, and protein levels from the entire library. Using a simple model, we found that RNA and protein expression were within twofold of expected levels 80% and 64% of the time, respectively. The large dataset allowed quantitation of global effects, such as translation rate on mRNA stability and mRNA secondary structure on translation rate. However, the worst 5% of constructs deviated from prediction by 13-fold on average, which could hinder large-scale genetic engineering projects. The ease and scale this of approach indicates that rather than relying on prediction or standardization, we can screen synthetic libraries for desired behavior.


Assuntos
Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Biblioteca Gênica , Engenharia Genética/métodos , Modelos Genéticos , RNA Mensageiro/genética , Biologia de Sistemas/métodos , Clonagem Molecular , Primers do DNA/genética , Escherichia coli/genética , Citometria de Fluxo , Sequenciamento de Nucleotídeos em Larga Escala , Regiões Promotoras Genéticas/genética , Elementos Reguladores de Transcrição/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ribossomos/genética
7.
Bioinformatics ; 30(8): 1087-1094, 2014 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-24398007

RESUMO

MOTIVATION: Current advances in DNA synthesis, cloning and sequencing technologies afford high-throughput implementation of artificial sequences into living cells. However, flexible computational tools for multi-objective sequence design are lacking, limiting the potential of these technologies. RESULTS: We developed DNA-Tailor (D-Tailor), a fully extendable software framework, for property-based design of synthetic DNA sequences. D-Tailor permits the seamless integration of multiple sequence analysis tools into a generic Monte Carlo simulation that evolves sequences toward any combination of rationally defined properties. As proof of principle, we show that D-Tailor is capable of designing sequence libraries comprising all possible combinations among three different sequence properties influencing translation efficiency in Escherichia coli The capacity to design artificial sequences that systematically sample any given parameter space should support the implementation of more rigorous experimental designs. AVAILABILITY: Source code is available for download at https://sourceforge.net/projects/dtailor/ CONTACT: aparkin@lbl.gov or cambray.guillaume@gmail.com Supplementary information: Supplementary data are available at Bioinformatics online (D-Tailor Tutorial).


Assuntos
Análise de Sequência de DNA/métodos , Software , Biologia Computacional , DNA , Escherichia coli/genética , Método de Monte Carlo
8.
Nucleic Acids Res ; 41(9): 5139-48, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23511967

RESUMO

The reliable forward engineering of genetic systems remains limited by the ad hoc reuse of many types of basic genetic elements. Although a few intrinsic prokaryotic transcription terminators are used routinely, termination efficiencies have not been studied systematically. Here, we developed and validated a genetic architecture that enables reliable measurement of termination efficiencies. We then assembled a collection of 61 natural and synthetic terminators that collectively encode termination efficiencies across an ∼800-fold dynamic range within Escherichia coli. We simulated co-transcriptional RNA folding dynamics to identify competing secondary structures that might interfere with terminator folding kinetics or impact termination activity. We found that structures extending beyond the core terminator stem are likely to increase terminator activity. By excluding terminators encoding such context-confounding elements, we were able to develop a linear sequence-function model that can be used to estimate termination efficiencies (r = 0.9, n = 31) better than models trained on all terminators (r = 0.67, n = 54). The resulting systematically measured collection of terminators should improve the engineering of synthetic genetic systems and also advance quantitative modeling of transcription termination.


Assuntos
Modelos Genéticos , Regiões Terminadoras Genéticas , Terminação da Transcrição Genética , Escherichia coli/genética , Dobramento de RNA
9.
ACS Synth Biol ; 13(3): 951-957, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38335132

RESUMO

Lactic acid bacteria (LAB) are important for many biotechnological applications such as bioproduction and engineered probiotics for therapy. Inducible promoters are key gene expression control elements, yet those available in LAB are mainly based on bacteriocin systems and have many drawbacks, including large gene clusters, costly inducer peptides, and little portability to in vivo settings. Using Lactobacillus gasseri, a model commensal bacteria from the human gut, we report the engineering of synthetic LactoSpanks promoters (Pls), a collection of variable strength inducible promoters controlled by the LacI repressor from E. coli and induced by isopropyl ß-d-1-thiogalactopyranoside (IPTG). We first show that the Phyper-spank promoter from Bacillus subtilis is functional in L. gasseri, albeit with substantial leakage. We then construct and screen a semirational library of Phyper-spank variants to select a set of four IPTG-inducible promoters that span a range of expression levels and exhibit reduced leakages and operational dynamic ranges (from ca. 9 to 28 fold-change). With their low genetic footprint and simplicity of use, LactoSpanks will support many applications in L. gasseri, and potentially other lactic acid and Gram-positive bacteria.


Assuntos
Lactobacillales , Lactobacillus gasseri , Humanos , Lactobacillus gasseri/genética , Isopropiltiogalactosídeo/farmacologia , Lactobacillales/genética , Escherichia coli/metabolismo , Regiões Promotoras Genéticas/genética
11.
PLoS One ; 18(2): e0280935, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36800374

RESUMO

Engineered bacteria are promising candidates for in situ detection and treatment of diseases. The female uro-genital tract presents several pathologies, such as sexually transmitted diseases or genital cancer, that could benefit from such technology. While bacteria from the gut microbiome are increasingly engineered, the use of chassis isolated from the female uro-genital resident flora has been limited. A major hurdle to implement the experimental throughput required for efficient engineering in these non-model bacteria is their low transformability. Here we report an optimized electrotransformation protocol for Lactobacillus jensenii, one the most widespread species across vaginal microflora. Starting from classical conditions, we optimized buffers, electric field parameters, cuvette type and DNA quantity to achieve an 80-fold improvement in transformation efficiency, with up to 3.5·103 CFUs/µg of DNA in L. jensenii ATCC 25258. We also identify several plasmids that are maintained and support reporter gene expression in L. jensenii. Finally, we demonstrate that our protocol provides increased transformability in three independent clinical isolates of L. jensenii. This work will facilitate the genetic engineering of L. jensenii and enable its use for addressing challenges in gynecological healthcare.


Assuntos
Lactobacillus , Vagina , Feminino , Humanos , Vagina/microbiologia , Bactérias/genética , Plasmídeos/genética
12.
ISME Commun ; 3(1): 40, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37117399

RESUMO

Mosquitoes represent the most important pathogen vectors and are responsible for the spread of a wide variety of poorly treatable diseases. Wolbachia are obligate intracellular bacteria that are widely distributed among arthropods and collectively represents one of the most promising solutions for vector control. In particular, Wolbachia has been shown to limit the transmission of pathogens, and to dramatically affect the reproductive behavior of their host through its phage WO. While much research has focused on deciphering and exploring the biocontrol applications of these WO-related phenotypes, the extent and potential impact of the Wolbachia mobilome remain poorly appreciated. Notably, several Wolbachia plasmids, carrying WO-like genes and Insertion Sequences (IS), thus possibly interrelated to other genetic units of the endosymbiont, have been recently discovered. Here we investigated the diversity and biogeography of the first described plasmid of Wolbachia in Culex pipiens (pWCP) in several islands and continental countries around the world-including Cambodia, Guadeloupe, Martinique, Thailand, and Mexico-together with mosquito strains from colonies that evolved for 2 to 30 years in the laboratory. We used PCR and qPCR to determine the presence and copy number of pWCP in individual mosquitoes, and highly accurate Sanger sequencing to evaluate potential variations. Together with earlier observation, our results show that pWCP is omnipresent and strikingly conserved among Wolbachia populations within mosquitoes from distant geographies and environmental conditions. These data suggest a critical role for the plasmid in Wolbachia ecology and evolution, and the potential of a great tool for further genetic dissection and possible manipulation of this endosymbiont.

13.
Nucleic Acids Res ; 38(15): e153, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20534632

RESUMO

As the field of synthetic biology expands, strategies and tools for the rapid construction of new biochemical pathways will become increasingly valuable. Purely rational design of complex biological pathways is inherently limited by the current state of our knowledge. Selection of optimal arrangements of genetic elements from randomized libraries may well be a useful approach for successful engineering. Here, we propose the construction and optimization of metabolic pathways using the inherent gene shuffling activity of a natural bacterial site-specific recombination system, the integron. As a proof of principle, we constructed and optimized a functional tryptophan biosynthetic operon in Escherichia coli. The trpA-E genes along with 'regulatory' elements were delivered as individual recombination cassettes in a synthetic integron platform. Integrase-mediated recombination generated thousands of genetic combinations overnight. We were able to isolate a large number of arrangements displaying varying fitness and tryptophan production capacities. Several assemblages required as many as six recombination events and produced as much as 11-fold more tryptophan than the natural gene order in the same context.


Assuntos
Embaralhamento de DNA/métodos , Integrons , Escherichia coli/enzimologia , Escherichia coli/genética , Óperon , Recombinação Genética , Triptofano/biossíntese
14.
Nat Commun ; 13(1): 7755, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36517468

RESUMO

Synthetic biology often involves engineering microbial strains to express high-value proteins. Thanks to progress in rapid DNA synthesis and sequencing, deep learning has emerged as a promising approach to build sequence-to-expression models for strain optimization. But such models need large and costly training data that create steep entry barriers for many laboratories. Here we study the relation between accuracy and data efficiency in an atlas of machine learning models trained on datasets of varied size and sequence diversity. We show that deep learning can achieve good prediction accuracy with much smaller datasets than previously thought. We demonstrate that controlled sequence diversity leads to substantial gains in data efficiency and employed Explainable AI to show that convolutional neural networks can finely discriminate between input DNA sequences. Our results provide guidelines for designing genotype-phenotype screens that balance cost and quality of training data, thus helping promote the wider adoption of deep learning in the biotechnology sector.


Assuntos
Aprendizado Profundo , Redes Neurais de Computação , Aprendizado de Máquina , Proteínas
15.
PLoS Genet ; 4(11): e1000256, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19008944

RESUMO

The evolutionary potential of a gene is constrained not only by the amino acid sequence of its product, but by its DNA sequence as well. The topology of the genetic code is such that half of the amino acids exhibit synonymous codons that can reach different subsets of amino acids from each other through single mutation. Thus, synonymous DNA sequences should access different regions of the protein sequence space through a limited number of mutations, and this may deeply influence the evolution of natural proteins. Here, we demonstrate that this feature can be of value for manipulating protein evolvability. We designed an algorithm that, starting from an input gene, constructs a synonymous sequence that systematically includes the codons with the most different evolutionary perspectives; i.e., codons that maximize accessibility to amino acids previously unreachable from the template by point mutation. A synonymous version of a bacterial antibiotic resistance gene was computed and synthesized. When concurrently submitted to identical directed evolution protocols, both the wild type and the recoded sequence led to the isolation of specific, advantageous phenotypic variants. Simulations based on a mutation isolated only from the synthetic gene libraries were conducted to assess the impact of sub-functional selective constraints, such as codon usage, on natural adaptation. Our data demonstrate that rational design of synonymous synthetic genes stands as an affordable improvement to any directed evolution protocol. We show that using two synonymous DNA sequences improves the overall yield of the procedure by increasing the diversity of mutants generated. These results provide conclusive evidence that synonymous coding sequences do experience different areas of the corresponding protein adaptive landscape, and that a sequence's codon usage effectively constrains the evolution of the encoded protein.


Assuntos
Acetiltransferases/genética , Evolução Molecular , Genes Sintéticos , Acetiltransferases/síntese química , Sequência de Aminoácidos , Sequência de Bases , Escherichia coli/genética , Código Genético , Dados de Sequência Molecular , Mutação , Seleção Genética
16.
Nat Commun ; 12(1): 5216, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34471137

RESUMO

Bacterial biosensors, or bactosensors, are promising agents for medical and environmental diagnostics. However, the lack of scalable frameworks to systematically program ligand detection limits their applications. Here we show how novel, clinically relevant sensing modalities can be introduced into bactosensors in a modular fashion. To do so, we have leveraged a synthetic receptor platform, termed EMeRALD (Engineered Modularized Receptors Activated via Ligand-induced Dimerization) which supports the modular assembly of sensing modules onto a high-performance, generic signaling scaffold controlling gene expression in E. coli. We apply EMeRALD to detect bile salts, a biomarker of liver dysfunction, by repurposing sensing modules from enteropathogenic Vibrio species. We improve the sensitivity and lower the limit-of-detection of the sensing module by directed evolution. We then engineer a colorimetric bactosensor detecting pathological bile salt levels in serum from patients having undergone liver transplant, providing an output detectable by the naked-eye. The EMeRALD technology enables functional exploration of natural sensing modules and rapid engineering of synthetic receptors for diagnostics, environmental monitoring, and control of therapeutic microbes.


Assuntos
Bactérias/metabolismo , Biomarcadores/metabolismo , Técnicas Biossensoriais , Proteínas de Transporte/metabolismo , Patologia Molecular/métodos , Bactérias/genética , Ácidos e Sais Biliares/sangue , Técnicas Biossensoriais/métodos , Proteínas de Transporte/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Humanos , Transplante de Fígado , Engenharia Metabólica/métodos , Sensibilidade e Especificidade , Alinhamento de Sequência , Vibrio , Vibrioses/diagnóstico
17.
Nat Biotechnol ; 36(10): 1005-1015, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30247489

RESUMO

Comparative analyses of natural and mutated sequences have been used to probe mechanisms of gene expression, but small sample sizes may produce biased outcomes. We applied an unbiased design-of-experiments approach to disentangle factors suspected to affect translation efficiency in E. coli. We precisely designed 244,000 DNA sequences implementing 56 replicates of a full factorial design to evaluate nucleotide, secondary structure, codon and amino acid properties in combination. For each sequence, we measured reporter transcript abundance and decay, polysome profiles, protein production and growth rates. Associations between designed sequences properties and these consequent phenotypes were dominated by secondary structures and their interactions within transcripts. We confirmed that transcript structure generally limits translation initiation and demonstrated its physiological cost using an epigenetic assay. Codon composition has a sizable impact on translatability, but only in comparatively rare elongation-limited transcripts. We propose a set of design principles to improve translation efficiency that would benefit from more accurate prediction of secondary structures in vivo.


Assuntos
DNA Bacteriano/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Biossíntese de Proteínas , Proteínas de Escherichia coli/genética , RNA Bacteriano/genética
20.
PLoS One ; 9(3): e91194, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24614503

RESUMO

Chromosome 2 of Vibrio cholerae carries a chromosomal superintegron, composed of an integrase, a cassette integration site (attI) and an array of mostly promoterless gene cassettes. We determined the precise location of the promoter, Pc, which drives the transcription of the first cassettes of the V. cholerae superintegron. We found that cassette mRNA starts 65 bp upstream of the attI site, so that the inversely oriented promoters Pc and Pint (integrase promoter) partly overlap, allowing for their potential co-regulation. Pint was previously shown to be induced during the SOS response and is further controlled by the catabolite repression cAMP-CRP complex. We found that cassette expression from Pc was also controlled by the cAMP-CRP complex, but is not part of the SOS regulon. Pint and Pc promoters were both found to be induced in rich medium, at high temperature, high salinity and at the end of exponential growth phase, although at very different levels and independently of sigma factor RpoS. All these results show that expression from the integrase and cassette promoters can take place at the same time, thus leading to coordinated excisions and integrations within the superintegron and potentially coupling cassette shuffling to immediate selective advantage.


Assuntos
Regulação Bacteriana da Expressão Gênica , Integrases/metabolismo , Integrons/genética , Regiões Promotoras Genéticas , Vibrio cholerae/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Repressão Catabólica/efeitos dos fármacos , Repressão Catabólica/genética , Meios de Cultura , AMP Cíclico/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Genes Bacterianos , Dados de Sequência Molecular , Resposta SOS em Genética/efeitos dos fármacos , Resposta SOS em Genética/genética , Fator sigma/metabolismo , Cloreto de Sódio/farmacologia , Temperatura , Sítio de Iniciação de Transcrição , Vibrio cholerae/efeitos dos fármacos , Vibrio cholerae/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA