RESUMO
By developing a high-density murine immunophenotyping platform compatible with high-throughput genetic screening, we have established profound contributions of genetics and structure to immune variation (http://www.immunophenotype.org). Specifically, high-throughput phenotyping of 530 unique mouse gene knockouts identified 140 monogenic 'hits', of which most had no previous immunologic association. Furthermore, hits were collectively enriched in genes for which humans show poor tolerance to loss of function. The immunophenotyping platform also exposed dense correlation networks linking immune parameters with each other and with specific physiologic traits. Such linkages limit freedom of movement for individual immune parameters, thereby imposing genetically regulated 'immunologic structures', the integrity of which was associated with immunocompetence. Hence, we provide an expanded genetic resource and structural perspective for understanding and monitoring immune variation in health and disease.
Assuntos
Infecções por Enterobacteriaceae/imunologia , Variação Genética/genética , Ensaios de Triagem em Larga Escala/métodos , Imunofenotipagem/métodos , Infecções por Salmonella/imunologia , Animais , Citrobacter/imunologia , Infecções por Enterobacteriaceae/microbiologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Salmonella/imunologia , Infecções por Salmonella/microbiologiaRESUMO
KPTN-related disorder is an autosomal recessive disorder associated with germline variants in KPTN (previously known as kaptin), a component of the mTOR regulatory complex KICSTOR. To gain further insights into the pathogenesis of KPTN-related disorder, we analysed mouse knockout and human stem cell KPTN loss-of-function models. Kptn -/- mice display many of the key KPTN-related disorder phenotypes, including brain overgrowth, behavioural abnormalities, and cognitive deficits. By assessment of affected individuals, we have identified widespread cognitive deficits (n = 6) and postnatal onset of brain overgrowth (n = 19). By analysing head size data from their parents (n = 24), we have identified a previously unrecognized KPTN dosage-sensitivity, resulting in increased head circumference in heterozygous carriers of pathogenic KPTN variants. Molecular and structural analysis of Kptn-/- mice revealed pathological changes, including differences in brain size, shape and cell numbers primarily due to abnormal postnatal brain development. Both the mouse and differentiated induced pluripotent stem cell models of the disorder display transcriptional and biochemical evidence for altered mTOR pathway signalling, supporting the role of KPTN in regulating mTORC1. By treatment in our KPTN mouse model, we found that the increased mTOR signalling downstream of KPTN is rapamycin sensitive, highlighting possible therapeutic avenues with currently available mTOR inhibitors. These findings place KPTN-related disorder in the broader group of mTORC1-related disorders affecting brain structure, cognitive function and network integrity.
Assuntos
Transdução de Sinais , Serina-Treonina Quinases TOR , Humanos , Animais , Camundongos , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/metabolismo , Encéfalo/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Cognição , Proteínas dos Microfilamentos/genéticaRESUMO
Metastasis is the leading cause of death for cancer patients. This multi-stage process requires tumour cells to survive in the circulation, extravasate at distant sites, then proliferate; it involves contributions from both the tumour cell and tumour microenvironment ('host', which includes stromal cells and the immune system). Studies suggest the early steps of the metastatic process are relatively efficient, with the post-extravasation regulation of tumour growth ('colonization') being critical in determining metastatic outcome. Here we show the results of screening 810 mutant mouse lines using an in vivo assay to identify microenvironmental regulators of metastatic colonization. We identify 23 genes that, when disrupted in mouse, modify the ability of tumour cells to establish metastatic foci, with 19 of these genes not previously demonstrated to play a role in host control of metastasis. The largest reduction in pulmonary metastasis was observed in sphingosine-1-phosphate (S1P) transporter spinster homologue 2 (Spns2)-deficient mice. We demonstrate a novel outcome of S1P-mediated regulation of lymphocyte trafficking, whereby deletion of Spns2, either globally or in a lymphatic endothelial-specific manner, creates a circulating lymphopenia and a higher percentage of effector T cells and natural killer (NK) cells present in the lung. This allows for potent tumour cell killing, and an overall decreased metastatic burden.
Assuntos
Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Genoma/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundário , Metástase Neoplásica/genética , Metástase Neoplásica/patologia , Animais , Proteínas de Transporte de Ânions/deficiência , Linhagem Celular Tumoral , Movimento Celular , Modelos Animais de Doenças , Feminino , Genômica , Células Matadoras Naturais/citologia , Células Matadoras Naturais/imunologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Linfopenia/genética , Linfopenia/patologia , Lisofosfolipídeos/metabolismo , Masculino , Camundongos , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Linfócitos T/citologia , Linfócitos T/imunologia , Microambiente TumoralRESUMO
The whipworm Trichuris trichiura is a soil-transmitted helminth that dwells in the epithelium of the caecum and proximal colon of their hosts causing the human disease, trichuriasis. Trichuriasis is characterized by colitis attributed to the inflammatory response elicited by the parasite while tunnelling through intestinal epithelial cells (IECs). The IL-10 family of receptors, comprising combinations of subunits IL-10Rα, IL-10Rß, IL-22Rα and IL-28Rα, modulates intestinal inflammatory responses. Here we carefully dissected the role of these subunits in the resistance of mice to infection with T. muris, a mouse model of the human whipworm T. trichiura. Our findings demonstrate that whilst IL-22Rα and IL-28Rα are dispensable in the host response to whipworms, IL-10 signalling through IL-10Rα and IL-10Rß is essential to control caecal pathology, worm expulsion and survival during T. muris infections. We show that deficiency of IL-10, IL-10Rα and IL-10Rß results in dysbiosis of the caecal microbiota characterised by expanded populations of opportunistic bacteria of the families Enterococcaceae and Enterobacteriaceae. Moreover, breakdown of the epithelial barrier after whipworm infection in IL-10, IL-10Rα and IL-10Rß-deficient mice, allows the translocation of these opportunistic pathogens or their excretory products to the liver causing organ failure and lethal disease. Importantly, bone marrow chimera experiments indicate that signalling through IL-10Rα and IL-10Rß in haematopoietic cells, but not IECs, is crucial to control worm expulsion and immunopathology. These findings are supported by worm expulsion upon infection of conditional mutant mice for the IL-10Rα on IECs. Our findings emphasize the pivotal and complex role of systemic IL-10Rα signalling on immune cells in promoting microbiota homeostasis and maintaining the intestinal epithelial barrier, thus preventing immunopathology during whipworm infections.
Assuntos
Interleucina-10/metabolismo , Receptores de Interleucina-10/metabolismo , Trichuris/imunologia , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Microbioma Gastrointestinal/imunologia , Homeostase , Interleucinas/metabolismo , Intestinos/microbiologia , Intestinos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Tricuríase/imunologia , Trichuris/parasitologia , Interleucina 22RESUMO
NBEAL2 encodes a multidomain scaffolding protein with a putative role in granule ontogeny in human platelets. Mutations in NBEAL2 underlie gray platelet syndrome (GPS), a rare inherited bleeding disorder characterized by a lack of α-granules within blood platelets and progressive bone marrow fibrosis. We present here a novel Nbeal2(-/-) murine model of GPS and demonstrate that the lack of α-granules is due to their loss from platelets/mature megakaryocytes (MKs), and not by initial impaired formation. We show that the lack of Nbeal2 confers a proinflammatory phenotype to the bone marrow MKs, which in combination with the loss of proteins from α-granules drives the development of bone marrow fibrosis. In addition, we demonstrate that α-granule deficiency impairs platelet function beyond their purely hemostatic role and that Nbeal2 deficiency has a protective effect against cancer metastasis.
Assuntos
Síndrome da Plaqueta Cinza/metabolismo , Megacariócitos/metabolismo , Animais , Proteínas Sanguíneas/genética , Proteínas Sanguíneas/metabolismo , Modelos Animais de Doenças , Síndrome da Plaqueta Cinza/genética , Síndrome da Plaqueta Cinza/patologia , Humanos , Megacariócitos/patologia , Camundongos , Camundongos Knockout , Mutação , Metástase Neoplásica , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Mielofibrose Primária/genética , Mielofibrose Primária/metabolismo , Mielofibrose Primária/patologia , Vesículas SecretóriasRESUMO
C57BL/6N (B6N) is becoming the standard background for genetic manipulation of the mouse genome. The B6N, whose genome is very closely related to the reference C57BL/6J genome, is versatile in a wide range of phenotyping and experimental settings and large repositories of B6N ES cells have been developed. Here, we present a series of studies showing the baseline characteristics of B6N fed a high-fat diet (HFD) for up to 12 weeks. We show that HFD-fed B6N mice show increased weight gain, fat mass, and hypercholesterolemia compared to control diet-fed mice. In addition, HFD-fed B6N mice display a rapid onset of lipid accumulation in the liver with both macro- and microvacuolation, which became more severe with increasing duration of HFD. Our results suggest that the B6N mouse strain is a versatile background for studying diet-induced metabolic syndrome and may also represent a model for early nonalcoholic fatty liver disease.
Assuntos
Modelos Animais de Doenças , Metabolismo dos Lipídeos , Camundongos/metabolismo , Obesidade/metabolismo , Animais , Peso Corporal , Dieta Hiperlipídica/efeitos adversos , Feminino , Humanos , Fígado/metabolismo , Masculino , Camundongos/crescimento & desenvolvimento , Camundongos Endogâmicos C57BL , Obesidade/etiologiaAssuntos
Complexo 2-3 de Proteínas Relacionadas à Actina/deficiência , Hipersensibilidade/complicações , Hipersensibilidade/genética , Inflamação/complicações , Inflamação/genética , Imunodeficiência Combinada Severa/diagnóstico , Imunodeficiência Combinada Severa/etiologia , Animais , Biomarcadores , Biópsia , Análise Mutacional de DNA , Modelos Animais de Doenças , Suscetibilidade a Doenças , Humanos , Hipersensibilidade/metabolismo , Inflamação/metabolismo , Camundongos , Fenótipo , Imunodeficiência Combinada Severa/metabolismo , Índice de Gravidade de Doença , Pele/imunologia , Pele/patologiaRESUMO
FBXO7 encodes an F box containing protein that interacts with multiple partners to facilitate numerous cellular processes and has a canonical role as part of an SCF E3 ubiquitin ligase complex. Mutation of FBXO7 is responsible for an early onset Parkinsonian pyramidal syndrome and genome-wide association studies have linked variants in FBXO7 to erythroid traits. A putative orthologue in Drosophila, nutcracker, has been shown to regulate the proteasome, and deficiency of nutcracker results in male infertility. Therefore, we reasoned that modulating Fbxo7 levels in a murine model could provide insights into the role of this protein in mammals. We used a targeted gene trap model which retained 4-16% residual gene expression and assessed the sensitivity of phenotypic traits to gene dosage. Fbxo7 hypomorphs showed regenerative anaemia associated with a shorter erythrocyte half-life, and male mice were infertile. Alterations to T cell phenotypes were also observed, which intriguingly were both T cell intrinsic and extrinsic. Hypomorphic mice were also sensitive to infection with Salmonella, succumbing to a normally sublethal challenge. Despite these phenotypes, Fbxo7 hypomorphs were produced at a normal Mendelian ratio with a normal lifespan and no evidence of neurological symptoms. These data suggest that erythrocyte survival, T cell development and spermatogenesis are particularly sensitive to Fbxo7 gene dosage.
Assuntos
Alelos , Proteínas F-Box , Dosagem de Genes , Regulação da Expressão Gênica , Infertilidade Masculina , Característica Quantitativa Herdável , Animais , Proteínas F-Box/biossíntese , Proteínas F-Box/genética , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Salmonella , Infecções por Salmonella/genética , Espermatogênese/genéticaRESUMO
Failure to maintain a normal in vivo erythrocyte half-life results in the development of hemolytic anemia. Half-life is affected by numerous factors, including energy balance, electrolyte gradients, reactive oxygen species, and membrane plasticity. The heterotrimeric AMP-activated protein kinase (AMPK) is an evolutionarily conserved serine/threonine kinase that acts as a critical regulator of cellular energy balance. Previous roles for the alpha 1 and gamma 1 subunits in the control of erythrocyte survival have been reported. In the work described here, we studied the role of the beta 1 subunit in erythrocytes and observed microcytic anemia with compensatory extramedullary hematopoiesis together with splenomegaly and increased osmotic resistance.
Assuntos
Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Eritrócitos/metabolismo , Anemia Hipocrômica/genética , Anemia Hipocrômica/metabolismo , Anemia Hipocrômica/patologia , Animais , Eritrócitos/citologia , Eritrócitos/patologia , Eritrócitos/ultraestrutura , Eritropoese/genética , Feminino , Expressão Gênica , Masculino , Camundongos , Camundongos Knockout , Isoformas de Proteínas , Baço/metabolismo , Baço/patologiaRESUMO
The antiviral restriction factor IFN-induced transmembrane protein 3 (IFITM3) inhibits cell entry of a number of viruses, and genetic diversity within IFITM3 determines susceptibility to viral disease in humans. Here, we used the murine CMV (MCMV) model of infection to determine that IFITM3 limits herpesvirus-associated pathogenesis without directly preventing virus replication. Instead, IFITM3 promoted antiviral cellular immunity through the restriction of virus-induced lymphopenia, apoptosis-independent NK cell death, and loss of T cells. Viral disease in Ifitm3-/- mice was accompanied by elevated production of cytokines, most notably IL-6. IFITM3 inhibited IL-6 production by myeloid cells in response to replicating and nonreplicating virus as well as following stimulation with the TLR ligands Poly(I:C) and CpG. Although IL-6 promoted virus-specific T cell responses, uncontrolled IL-6 expression in Ifitm3-/- mice triggered the loss of NK cells and subsequently impaired control of MCMV replication. Thus, IFITM3 represents a checkpoint regulator of antiviral immunity that controls cytokine production to restrict viral pathogenesis. These data suggest the utility of cytokine-targeting strategies in the treatment of virus-infected individuals with impaired IFITM3 activity.
Assuntos
Citocinas/fisiologia , Infecções por Herpesviridae/metabolismo , Proteínas de Membrana/fisiologia , Animais , Células Cultivadas , Infecções por Herpesviridae/imunologia , Imunidade Celular , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Muromegalovirus/fisiologia , Receptores de Interleucina-6/metabolismo , Transdução de Sinais , Internalização do Vírus , Replicação ViralRESUMO
UNLABELLED: Mice harboring a mutation in the gene encoding gastric intrinsic factor (Gif), a protein essential for the absorption of vitamin B12/cobalamin (Cbl), have potential as a model to explore the role of vitamins in infection. The levels of Cbl in the blood of Gif(tm1a/tm1a) mutant mice were influenced by the maternal genotype, with offspring born to heterozygous (high Cbl, F1) mothers exhibiting a significantly higher serum Cbl level than those born to homozygous (low Cbl, F2) equivalents. Low Cbl levels correlated with susceptibility to an infectious challenge with Salmonella enterica serovar Typhimurium or Citrobacter rodentium, and this susceptibility phenotype was moderated by Cbl administration. Transcriptional and metabolic profiling revealed that Cbl deficient mice exhibited a bioenergetic shift similar to a metabolic phenomenon commonly found in cancerous cells under hypoxic conditions known as the Warburg effect, with this metabolic effect being exacerbated further by infection. Our findings demonstrate a role for Cbl in bacterial infection, with potential general relevance to dietary deficiency and infection susceptibility. IMPORTANCE: Malnutrition continues to be a major public health problem in countries with weak infrastructures. In communities with a high prevalence of poor diet, malnourishment and infectious disease can impact vulnerable individuals such as pregnant women and children. Here, we describe a highly flexible murine model for monitoring maternal and environmental influences of vitamin B12 metabolism. We also demonstrate the potential importance of vitamin B12 in controlling susceptibility to bacterial pathogens such as C. rodentium and S Typhimurium. We postulate that this model, along with similarly vitamin deficient mice, could be used to further explore the mechanisms associated with micronutrients and susceptibility to diseases, thereby increasing our understanding of disease in the malnourished.
Assuntos
Suscetibilidade a Doenças , Infecções por Enterobacteriaceae/imunologia , Deficiência de Vitamina B 12/complicações , Animais , Citrobacter rodentium/imunologia , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Metaboloma , Camundongos , Camundongos Knockout , Salmonella typhimurium/imunologiaRESUMO
Iron homeostasis is a dynamic process that is tightly controlled to balance iron uptake, storage, and export. Reduction of dietary iron from the ferric to the ferrous form is required for uptake by solute carrier family 11 (proton-coupled divalent metal ion transporters), member 2 (Slc11a2) into the enterocytes. Both processes are proton dependent and have led to the suggestion of the importance of acidic gastric pH for the absorption of dietary iron. Potassium voltage-gated channel subfamily E, member 2 (KCNE2), in combination with potassium voltage-gated channel, KQT-like subfamily, member 1 (KCNQ1), form a gastric potassium channel essential for gastric acidification. Deficiency of either Kcne2 or Kcnq1 results in achlorhydia, gastric hyperplasia, and neoplasia, but the impact on iron absorption has not, to our knowledge, been investigated. Here we report that Kcne2-deficient mice, in addition to the previously reported phenotypes, also present with iron-deficient anemia. Interestingly, impaired function of KCNQ1 results in iron-deficient anemia in Jervell and Lange-Nielsen syndrome patients. We speculate that impaired function of KCNE2 could result in the same clinical phenotype.
Assuntos
Anemia Ferropriva/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/deficiência , Anemia Ferropriva/sangue , Animais , Dieta Ocidental , Índices de Eritrócitos , Eritropoetina/sangue , Feminino , Ferritinas/sangue , Heterogeneidade Genética , Hematócrito , Humanos , Canal de Potássio KCNQ1/deficiência , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/fisiologia , Caracteres Sexuais , Especificidade da Espécie , Organismos Livres de Patógenos Específicos , Transferrina/análiseRESUMO
To maximize the sensitivity of detecting affects of genetic variants in mice, variables have been minimized through the use of inbred mouse lines, by eliminating infectious organisms and controlling environmental variables. However, the impact of standard animal husbandry and experimental procedures on the validity of experimental data is under appreciated. In this study we monitored the impact of these procedures by using parameters that reflect stress and physiological responses to it. Short-term measures included telemetered heart rate and systolic arterial pressure, core body temperature and blood glucose, while longer-term parameters were assessed such as body weight. Male and female C57BL6/NTac mice were subjected to a range of stressors with different perceived severities ranging from repeated blood glucose and core temperature measurement procedures, intra-peritoneal injection and overnight fasting to cage transport and cage changing.Our studies reveal that common husbandry and experimental procedures significantly influence mouse physiology and behaviour. Systolic arterial pressure, heart rate, locomotor activity, core temperature and blood glucose were elevated in response to a range of experimental procedures. Differences between sexes were evident, female mice displayed more sustained cardiovascular responses and locomotor activity than male mice. These results have important implications for the design and implementation of multiple component experiments where the lasting effects of stress from previous tests may modify the outcomes of subsequent ones.
Assuntos
Pressão Sanguínea/fisiologia , Temperatura Corporal/fisiologia , Frequência Cardíaca/fisiologia , Atividade Motora/fisiologia , Fenótipo , Estresse Psicológico/fisiopatologia , Fatores Etários , Análise de Variância , Animais , Animais Recém-Nascidos , Glicemia , Modelos Animais de Doenças , Jejum/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores Sexuais , Telemetria/métodos , Fatores de TempoRESUMO
Congenital central hypothyroidism occurs either in isolation or in conjunction with other pituitary hormone deficits. Using exome and candidate gene sequencing, we identified 8 distinct mutations and 2 deletions in IGSF1 in males from 11 unrelated families with central hypothyroidism, testicular enlargement and variably low prolactin concentrations. IGSF1 is a membrane glycoprotein that is highly expressed in the anterior pituitary gland, and the identified mutations impair its trafficking to the cell surface in heterologous cells. Igsf1-deficient male mice show diminished pituitary and serum thyroid-stimulating hormone (TSH) concentrations, reduced pituitary thyrotropin-releasing hormone (TRH) receptor expression, decreased triiodothyronine concentrations and increased body mass. Collectively, our observations delineate a new X-linked disorder in which loss-of-function mutations in IGSF1 cause central hypothyroidism, likely secondary to an associated impairment in pituitary TRH signaling.