Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Chemistry ; 30(15): e202303681, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38116819

RESUMO

N-heterocyclic carbene (NHC) monolayers are transforming electrocatalysis and biosensor design via their increased performance and stability. Despite their increasing use in electrochemical systems, the integrity of the NHC monolayer during voltage perturbations remains largely unknown. Herein, we deploy surface-enhanced Raman spectroscopy (SERS) to measure the stability of two model NHCs on gold in ambient conditions as a function of applied potential and under continuous voltammetric interrogation. Our results illustrate that NHC monolayers exhibit electrochemical stability over a wide voltage window (-1 V to 0.5 V vs Ag|AgCl), but they are found to degrade at strongly reducing (< -1 V) or oxidizing (>0.5 V) potentials. We also address NHC monolayer stability under continuous voltammetric interrogation between 0.2 V and -0.5 V, a commonly used voltage window for sensing, showing they are stable for up to 43 hours. However, we additionally find that modifications of the backbone NHC structure can lead to significantly shorter operational lifetimes. While these results highlight the potential of NHC architectures for electrode functionalization, they also reveal potential pitfalls that have not been fully appreciated in electrochemical applications of NHCs.

2.
Proc Natl Acad Sci U S A ; 117(5): 2288-2293, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31964821

RESUMO

Limited approaches exist for imaging and recording spectra of individual nanostructures in the midinfrared region. Here we use infrared photothermal heterodyne imaging (IR-PHI) to interrogate single, high aspect ratio Au nanowires (NWs). Spectra recorded between 2,800 and 4,000 cm-1 for 2.5-3.9-µm-long NWs reveal a series of resonances due to the Fabry-Pérot modes of the NWs. Crucially, IR-PHI images show structure that reflects the spatial distribution of the NW absorption, and allow the resonances to be assigned to the m = 3 and m = 4 Fabry-Pérot modes. This far-field optical measurement has been used to image the mode structure of plasmon resonances in metal nanostructures, and is made possible by the superresolution capabilities of IR-PHI. The linewidths in the NW spectra range from 35 to 75 meV and, in several cases, are significantly below the limiting values predicted by the bulk Au Drude damping parameter. These linewidths imply long dephasing times, and are attributed to reduction in both radiation damping and resistive heating effects in the NWs. Compared to previous imaging studies of NW Fabry-Pérot modes using electron microscopy or near-field optical scanning techniques, IR-PHI experiments are performed under ambient conditions, enabling detailed studies of how the environment affects mid-IR plasmons.

3.
Angew Chem Int Ed Engl ; 62(21): e202219182, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36853583

RESUMO

The widespread application of laser desorption/ionization mass spectrometry (LDI-MS) highlights the need for a bright and multiplexable labeling platform. While ligand-capped Au nanoparticles (AuNPs) have emerged as a promising LDI-MS contrast agent, the predominant thiol ligands suffer from low ion yields and extensive fragmentation. In this work, we develop a N-heterocyclic carbene (NHC) ligand platform that enhances AuNP LDI-MS performance. NHC scaffolds are tuned to generate barcoded AuNPs which, when benchmarked against thiol-AuNPs, are bright mass tags and form unfragmented ions in high yield. To illustrate the transformative potential of NHC ligands, the mass tags were employed in three orthogonal applications: monitoring a bioconjugation reaction, performing multiplexed imaging, and storing and reading encoded information. These results demonstrate that NHC-nanoparticle systems are an ideal platform for LDI-MS and greatly broaden the scope of nanoparticle contrast agents.


Assuntos
Ouro , Nanopartículas Metálicas , Animais , Ouro/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Nanopartículas Metálicas/química , Ligantes , Meios de Contraste , Armazenamento e Recuperação da Informação
4.
Small ; 18(52): e2205780, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36344422

RESUMO

The advancement of nanoenabled wafer-based devices requires the establishment of core competencies related to the deterministic positioning of nanometric building blocks over large areas. Within this realm, plasmonic single-crystal gold nanotriangles represent one of the most attractive nanoscale components but where the formation of addressable arrays at scale has heretofore proven impracticable. Herein, a benchtop process is presented for the formation of large-area periodic arrays of gold nanotriangles. The devised growth pathway sees the formation of an array of defect-laden seeds using lithographic and vapor-phase assembly processes followed by their placement in a growth solution promoting planar growth and threefold symmetric side-faceting. The nanotriangles formed in this high-yield synthesis distinguish themselves in that they are epitaxially aligned with the underlying substrate, grown to thicknesses that are not readily obtainable in colloidal syntheses, and present atomically flat pristine surfaces exhibiting gold atoms with a close-packed structure. As such, they express crisp and unambiguous plasmonic modes and form photoactive surfaces with highly tunable and readily modeled plasmon resonances. The devised methods, hence, advance the integration of single-crystal gold nanotriangles into device platforms and provide an overall fabrication strategy that is adaptable to other nanomaterials.


Assuntos
Ouro , Nanoestruturas , Ouro/química , Nanoestruturas/química
5.
Anal Chem ; 93(40): 13534-13538, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34582180

RESUMO

The proliferation of N-heterocyclic carbene (NHC) self-assembled monolayers (SAMs) on gold surfaces stems from their exceptional stability compared to conventional thiol-SAMs. The prospect of biological applications for NHC-SAMs on gold shows the need for biocompatible techniques (e.g., large biomolecule detection and high throughput) that assesses SAM molecular composition. Herein, we demonstrate that laser desorption ionization mass spectrometry (LDI-MS) is a powerful and facile probe of NHC surface chemistry. LDI-MS of prototypical imidazole-NHC- and benzimidazole-NHC-functionalized AuNPs yields exclusively [NHC2Au]+ ions and not larger gold clusters. Employing benzimidazole-NHC isotopologues, we explore how monolayers pack on a single AuNP and the lability of the NHCs once ligated. Quantitative analysis of the homoleptic and heteroleptic [NHC2Au]+ ions is performed by comparing to a binomial model representative of a randomized monolayer. Lastly, the reduction of nitro-NHC-AuNPs to amine-NHC-AuNPs is tracked via LDI-MS signals, illustrating the ability of LDI-MS to probe postsynthetic modifications of the anchored NHCs, which is critical for current and future applications of NHC surfaces.


Assuntos
Ouro , Nanopartículas Metálicas , Lasers , Espectrometria de Massas , Metano/análogos & derivados
6.
Langmuir ; 37(19): 5864-5871, 2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-33914540

RESUMO

N-heterocyclic carbenes (NHCs) have emerged as versatile and robust ligands for noble metal surface modifications due to their ability to form compact, self-assembled monolayers. Despite a growing body of research, previous NHC surface modification schemes have employed just two structural motifs: the benzimidazolium NHC and the imidazolium NHC. However, different NHC moieties, including saturated NHCs, are often more effective in homogenous catalysis chemistry than these aforementioned motifs and may impart numerous advantages to NHC surfaces, such as increased stability and access to chiral groups. This work explores the preparation and stability of NHC-coated gold surfaces using imidazolium and imidazolinium NHC ligands. X-ray photoelectron spectroscopy and surface-enhanced Raman spectroscopy demonstrate the attachment of NHC ligands to the gold surface and show enhanced stability of imidazolinium compared to the traditional imidazolium under harsh acidic conditions.

7.
J Chem Phys ; 154(3): 034703, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33499640

RESUMO

We report a comprehensive experimental and theoretical study of the lower-wavenumber vibrational modes in the surface-enhanced hyper-Raman scattering (SEHRS) of Rhodamine 6G (R6G) and its isotopologue R6G-d4. Measurements acquired on-resonance with two different electronic states, S1 and S2, are compared to the time-dependent density functional theory computations of the resonance hyper-Raman spectra and electrodynamics-quantum mechanical computations of the SEHRS spectra on-resonance with S1 and S2. After accounting for surface orientation, we find excellent agreement between experiment and theory for both R6G and its isotopologue. We then present a detailed analysis of the complex vibronic coupling effects in R6G and the importance of surface orientation for characterizing the system. This combination of theory and experiment allows, for the first time, an unambiguous assignment of lower-wavenumber vibrational modes of R6G and its isotopologue R6G-d4.

8.
Nano Lett ; 20(11): 7987-7994, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-32870693

RESUMO

Leveraging recent advances in electron energy monochromation and aberration correction, we record the spatially resolved infrared plasmon spectrum of individual tin-doped indium oxide nanocrystals using electron energy-loss spectroscopy (EELS). Both surface and bulk plasmon responses are measured as a function of tin doping concentration from 1-10 atomic percent. These results are compared to theoretical models, which elucidate the spectral detuning of the same surface plasmon resonance feature when measured from aloof and penetrating probe geometries. We additionally demonstrate a unique approach to retrieving the fundamental dielectric parameters of individual semiconductor nanocrystals via EELS. This method, devoid from ensemble averaging, illustrates the potential for electron-beam ellipsometry measurements on materials that cannot be prepared in bulk form or as thin films.

9.
Chem Rev ; 118(6): 2994-3031, 2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29215265

RESUMO

Electron energy loss spectroscopy (EELS) performed in a scanning transmission electron microscope (STEM) has demonstrated unprecedented power in the characterization of surface plasmons. The subangstrom spatial resolution achieved in EELS and its capability of exciting the full set of localized surface plasmon resonance (LSPR) modes supported by a metallic nanostructure makes STEM/EELS an ideal tool in the study of LSPRs. The plasmonic properties characterized using EELS can be associated with geometric or structural features collected simultaneously in a STEM to achieve a deeper understanding of the plasmonic response. In this review, we provide the reader a thorough experimental description of EELS as a LSPR characterization tool and summarize the exciting recent progress in the field of STEM/EELS plasmon characterization.

10.
Angew Chem Int Ed Engl ; 59(19): 7585-7590, 2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32092219

RESUMO

The remarkable resilience of N-heterocyclic carbene (NHC) gold bonds has quickly made NHCs the ligand of choice when functionalizing gold surfaces. Despite rapid progress using deposition from free or CO2 -protected NHCs, synthetic challenges hinder the functionalization of NHC surfaces with protic functional groups, such as alcohols and amines, particularly on larger nanoparticles. Here, we synthesize NHC-functionalized gold surfaces from gold(I) NHC complexes and aqueous nanoparticles without the need for additional reagents, enabling otherwise difficult functional groups to be appended to the carbene. The resilience of the NHC-Au bond allows for multi-step post-synthetic modification. Beginning with the nitro-NHC, we form an amine-NHC terminated surface, which further undergoes amide coupling with carboxylic acids. The simplicity of this approach, its compatibility with aqueous nanoparticle solutions, and its ability to yield protic functionality, greatly expands the potential of NHC-functionalized noble metal surfaces.

11.
Phys Rev Lett ; 123(17): 177401, 2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31702260

RESUMO

In this Letter, we exploit recent breakthroughs in monochromated aberration-corrected scanning transmission electron microscopy (STEM) to resolve infrared plasmonic Fano antiresonances in individual nanofabricated disk-rod dimers. Using a combination of electron energy-loss spectroscopy and theoretical modeling, we investigate and characterize a subspace of the weak coupling regime between quasidiscrete and quasicontinuum localized surface plasmon resonances where infrared plasmonic Fano antiresonances appear. This work illustrates the capability of STEM instrumentation to experimentally observe nanoscale plasmonic responses that were previously the domain only of higher-resolution infrared spectroscopies.

12.
J Am Chem Soc ; 140(4): 1247-1250, 2018 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-29355314

RESUMO

Surface-enhanced Raman spectroscopy (SERS) underpins a wide range of commercial and fundamental applications. SERS often relies on ligands, usually thiols, bound to a noble metal surface. The difficulty of straightforward thiol synthesis combined with their instability on surfaces highlights the need for alternative ligand design. We present the first example of SERS utilizing N-heterocyclic carbene ligands. A general three step synthesis is presented for functionalized NHC-CO2 adducts. These ligands are deposited on SERS-active gold film-over-nanosphere substrates (AuFONs) in solvent-free and base-free conditions, which prevents fouling. The resulting films are found to be robust and capable of postsynthetic modifications.

14.
Microsc Microanal ; 24(6): 647-656, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30588914

RESUMO

A new optical delivery system has been developed for the (scanning) transmission electron microscope. Here we describe the in situ and "rapid ex situ" photothermal heating modality of the system, which delivers >200 mW of optical power from a fiber-coupled laser diode to a 3.7 µm radius spot on the sample. Selected thermal pathways can be accessed via judicious choices of the laser power, pulse width, number of pulses, and radial position. The long optical working distance mitigates any charging artifacts and tremendous thermal stability is observed in both pulsed and continuous wave conditions, notably, no drift correction is applied in any experiment. To demonstrate the optical delivery system's capability, we explore the recrystallization, grain growth, phase separation, and solid state dewetting of a Ag0.5Ni0.5 film. Finally, we demonstrate that the structural and chemical aspects of the resulting dewetted films was assessed.

15.
Annu Rev Phys Chem ; 67: 331-57, 2016 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-27215817

RESUMO

Electron energy-loss spectroscopy (EELS) offers a window to view nanoscale properties and processes. When performed in a scanning transmission electron microscope, EELS can simultaneously render images of nanoscale objects with subnanometer spatial resolution and correlate them with spectroscopic information at a spectral resolution of ∼10-100 meV. Consequently, EELS is a near-perfect tool for understanding the optical and electronic properties of individual plasmonic metal nanoparticles and few-nanoparticle assemblies, which are significant in a wide range of fields. This review presents an overview of basic plasmonics and EELS theory and highlights several recent noteworthy experiments involving the interrogation of plasmonic metal nanoparticle systems using electron beams.

16.
Nano Lett ; 16(10): 6668-6676, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27673696

RESUMO

Negative-index metamaterials composed of magnetic plasmon oligomers are actively being investigated for their potential role in optical cloaking, superlensing, and nanolithography applications. A significant improvement to their practicality lies in the ability to function at multiple distinct wavelengths in the visible part of spectrum. Here we utilize the nanometer spatial-resolving power of electron energy-loss spectroscopy to conclusively demonstrate hybridization of magnetic plasmons in oligomer dimers that can achieve this goal. We also show that breaking the dimer's symmetry can induce all-magnetic Fano interferences based solely on the interplay of bright and dark magnetic modes, allowing us to further tailor the system's optical responses. These features are engineered through the design of the oligomer's underlying nanoparticle elements as elongated Ag nanodisks with spectrally isolated long-axis plasmon resonances. The resulting magnetic plasmon oligomers and their hybridized assemblies establish a new design paradigm for optical metamaterials with rich functionality.

17.
Anal Chem ; 88(14): 7191-7, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27356266

RESUMO

Hydrogen peroxide (H2O2) is known as a key molecule in a variety of biological processes, as well as a crucial byproduct in many enzymatic reactions. Therefore, being able to selectively and sensitively detect H2O2 is not only important in monitoring, estimating, and decoding H2O2 relevant physiological pathways but also very helpful in developing enzymatic-based biosensors for other analytes of interest. Herein, we report a plasmonic probe for H2O2 based on 3-mercaptophenylboronic acid (3-MPBA) modified gold nanoparticles (AuNPs) which is coupled with surface-enhanced Raman scattering (SERS) to yield a limit of detection (LOD) of 70 nM. Our probe quantifies both exogenous and endogenous H2O2 levels in living cells and can further be coupled with glucose oxidase (GOx) to achieve quantitative and selective detection of glucose in artificial urine and human serum.


Assuntos
Técnicas Biossensoriais/métodos , Glicemia/análise , Ácidos Borônicos/química , Peróxido de Hidrogênio/análise , Nanopartículas Metálicas/química , Glicemia/química , Ácidos Borônicos/toxicidade , Linhagem Celular Tumoral , Glucose Oxidase/química , Ouro/química , Humanos , Limite de Detecção , Nanopartículas Metálicas/toxicidade , Análise Espectral Raman
18.
J Chem Phys ; 155(9): 090401, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34496589
19.
Nano Lett ; 15(5): 3465-71, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25845028

RESUMO

Energy transfer from plasmonic nanoparticles to semiconductors can expand the available spectrum of solar energy-harvesting devices. Here, we spatially and spectrally resolve the interaction between single Ag nanocubes with insulating and semiconducting substrates using electron energy-loss spectroscopy, electrodynamics simulations, and extended plasmon hybridization theory. Our results illustrate a new way to characterize plasmon-semiconductor energy transfer at the nanoscale and bear impact upon the design of next-generation solar energy-harvesting devices.

20.
Anal Chem ; 87(13): 6460-4, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26057586

RESUMO

A probe mediated SERS-based strategy is developed to selectively detect hydrazine with superb sensitivity. Ortho-phthaldialdehyde, a simple probe, reacts specifically with hydrazine to form phthalazine, a molecule that possesses a larger Raman cross section and better affinity toward the SERS substrate. We observed a limit of detection of 8.5 × 10(-11) M. Our method shows both qualitative and quantitative measurement of hydrazine with high sensitivity, low cost, and fast analysis time.


Assuntos
Hidrazinas/análise , Análise Espectral Raman/métodos , Limite de Detecção , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA