Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38405945

RESUMO

Chronic bladder dysfunction due to bladder disease or trauma is detrimental to affected patients as it can lead to increased risk of upper urinary tract dysfunction. Current treatment options include surgical intervention that enlarge the bladder with autologous bowel tissue to alleviate pressure on the upper urinary tract. This highly invasive procedure, termed bladder augmentation enterocystoplasty (BAE), significantly increases risk of patient morbidity and mortality due to the incompatibility between the bowel and bladder tissue. Therefore, patients would significantly benefit from an alternative treatment strategy that can regenerate healthy tissue and restore overall bladder function. Previous research has demonstrated the potential of citrate-based scaffolds co-seeded with bone marrow-derived stem/progenitor cells as an alternative graft for bladder augmentation. Recognizing that contact guidance is known to influence tissue regeneration, we hypothesized that patterned scaffolds would modulate cell responses and improve overall quality of the regenerated bladder tissue. We fabricated microgrooved (MG) scaffolds using citrate-based biomaterial poly(1,8-octamethylene-citrate-co-octanol) (POCO) and co-seeded them with human bone marrow derived mesenchymal stem cells (MSCs) and CD34+ hematopoietic stem/progenitor cells (HSPCs). Microgrooved POCO scaffolds supported MSC and HSPC attachment, and MSC alignment within the microgrooves. All scaffolds were characterized and assessed for bladder tissue regeneration in an established nude rat bladder augmentation model. In all cases, normal physiological function was maintained post-augmentation, even without the presence of stem/progenitor cells. Urodynamic testing at 4-weeks post-augmentation for all experimental groups demonstrated that capacity increased and compliance was normal. Histological evaluation of the regenerated tissue revealed that cell-seeded scaffolds restored normal bladder smooth muscle content and resulted in increased revascularization and peripheral nerve regeneration. The presence of microgrooves on the cell-seeded scaffolds increased microvasculature formation by 20% and urothelium layer thickness by 25% in the regenerating tissue. Thus, this work demonstrates that micropatterning affects bladder regeneration to improve overall anatomical structure and re-establish bladder physiology.

2.
Biomater Adv ; 145: 213245, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36549149

RESUMO

There is a significant need across multiple indications for an off-the-shelf bioengineered tubular graft which fulfils the mechanical and biological requirements for implantation and function but does not necessarily require cells for manufacture or deployment. Herein, we present a tissue-like tubular construct using a cell-free, materials-based method of manufacture, utilizing densified collagen hydrogel. Our tubular grafts are seamless, mechanically strong, customizable in terms of lumen diameter and wall thickness, and display a uniform fibril density across the wall thickness and along the tube length. While the method enables acellular grafts to be generated rapidly, inexpensively, and to a wide range of specifications, the cell-compatible densification process also enables a high density of cells to be incorporated uniformly into the walls of the tubes, which we show can be maintained under perfusion culture. Additionally, the method enables tubes consisting of distinct cell domains with cellular configurations at the boundaries which may be useful for modelling aortic disease. Further, we demonstrate additional steps which allow for luminal surface patterning. These results highlight the universality of this approach and its potential for developing the next generation of bioengineered grafts.


Assuntos
Colágeno , Engenharia Tecidual , Humanos , Engenharia Tecidual/métodos , Engenharia Biomédica , Hidrogéis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA