RESUMO
This study described a soluble mediator storm in acute Yellow Fever/YF infection along the kinetics timeline towards convalescent disease. The analyses of the YF Viral RNAnemia, chemokines, cytokines, and growth factors were performed in YF patients at acute/(D1-15) and convalescent/(D16-315) phases. Patients with acute YF infection displayed a trimodal viremia profile spreading along D3, D6, and D8-14. A massive storm of mediators was observed in acute YF. Higher levels of mediators were observed in YF with higher morbidity scores, patients under intensive care, and those progressing to death than in YF patients who progress to late-relapsing hepatitis/L-Hep. A unimodal peak of biomarkers around D4-6 with a progressive decrease towards D181-315 was observed in non-L-Hep patients, while a bimodal pattern with a second peak around D61-90 was associated with L-Hep. This study provided a comprehensive landscape of evidence that distinct immune responses drive pathogenesis, disease progression, and L-Hep in YF patients.
Assuntos
Hepatite , Vacina contra Febre Amarela , Febre Amarela , Humanos , Febre Amarela/patologia , Prognóstico , Citocinas , BiomarcadoresRESUMO
In the present work, the impact of Sickle Cell Disease (SCD) degrees of severity, as well hydroxyurea treatment on the systemic immunological signatures of patients was evaluated. Based on a high-throughput chemokine, cytokine and growth factor multiplex analysis, it was possible to obtain the systemic immunological profile of patients with SCD (n = 40), treated or not with hydroxyurea, as compared to healthy controls (n = 40). Overall, SCD patients with severe disease displayed increased levels of almost all biomarkers analyzed. Our data demonstrated that CXCL8, CCL3 and CXCL10 were pointed out as universal biomarkers of SCD. The results also indicated that HU-untreated patients with indication of HU-therapy display a more prominent increase on plasma immune mediators in a similar way as those with severe SCD disease. Together, these findings provided a comprehensive landscape of evidence that may have implications for further therapeutic strategies and SCD clinical management.
Assuntos
Anemia Falciforme , Hidroxiureia , Humanos , Anemia Falciforme/tratamento farmacológico , Biomarcadores , Índice de Gravidade de Doença , Citocinas , Antidrepanocíticos/uso terapêuticoRESUMO
BACKGROUND: Acute bacterial meningitis (ABM) causes excessive activation of N-methyl-D-aspartate receptors (NMDAr), leading to cortical and hippocampal neuron death. As opposite, enteroviral meningitis is more frequently benign. The kynurenine (KYN) pathway is the major catabolic route of tryptophan (TRP) and some of its metabolites are agonists or antagonists of NMDAr. METHODS: In order to investigate the pathogen-specific patterns of KYN pathway modulation in the central nervous system of children with acute meningococcal (MM), pneumococcal (PM) or enteroviral (VM) meningitis, the cerebrospinal fluid (CSF) concentrations of TRP, KYN, kynurenic acid (KYNA) and quinolinic acid (QUINA) were evaluated by ultra-high performance liquid chromatography (uHPLC) coupled to mass spectrometry. In addition, CSF levels of IL-6, IL-10 and TNF-α were quantified by multi-analyte flow assay. The data was mined and integrated using statistical and machine learning methods. RESULTS: The three forms of meningitis investigated herein up-regulated the neurotoxic branch of the KYN pathway within the intrathecal space. However, this response, represented by the concentration of QUINA, was six and nine times higher in PM patients compared to MM or VM, respectively. CSF levels of IL-6, TNF-α, and IL-10 were increased in MM and PM patients when compared to controls. In VM, CSF IL-6 and IL-10, but not TNF-α were increased compared to controls, although not reaching the high levels found in bacterial meningitis. No correlation was found between the concentrations or the ratios of any pair of KYN metabolites and any cytokine or standard cytochemical parameter tested. CONCLUSIONS: CNS infection with meningococci, pneumococci, and enteroviruses intrathecally activate the KYN pathway, favoring its neurotoxic branch. However, in PM, higher CSF levels of QUINA, compared to MM and VM, may contribute to its poorer neurologic outcome.
Assuntos
Meningites Bacterianas , Meningite Pneumocócica , Criança , Humanos , Cinurenina/metabolismo , Interleucina-10 , Interleucina-6 , Triptofano/metabolismo , Sistema Nervoso Central/metabolismoRESUMO
The present observational study was designed to characterize the integrative profile of serum soluble mediators to describe the immunological networks associated with clinical findings and identify putative biomarkers for diagnosis and prognosis of active tuberculosis. The study population comprises 163 volunteers, including 84 patients with active pulmonary tuberculosis/(TB), and 79 controls/(C). Soluble mediators were measured by multiplexed assay. Data analysis demonstrated that the levels of CCL3, CCL5, CXCL10, IL-1ß, IL-6, IFN-γ, IL-1Ra, IL-4, IL-10, PDGF, VEGF, G-CSF, IL-7 were increased in TB as compared to C. Patients with bilateral pulmonary involvement/(TB-BI) exhibited higher levels of CXCL8, IL-6 and TNF with distinct biomarker signatures (CCL11, CCL2, TNF and IL-10) as compared to patients with unilateral infiltrates/(TB-UNI). Analysis of biomarker networks based in correlation power graph demonstrated small number of strong connections in TB and TB-BI. The search for biomarkers with relevant implications to understand the pathogenetic mechanisms and useful as complementary diagnosis tool of active TB pointed out the excellent performance of single analysis of IL-6 or CXCL10 and the stepwise combination of IL-6 â CXCL10 (Accuracy = 84 %; 80 % and 88 %, respectively). Together, our finding demonstrated that immunological networks of serum soluble biomarkers in TB patients differ according to the unilateral or bilateral pulmonary involvement and may have relevant implications to understand the pathogenetic mechanisms involved in the clinical outcome of Mtb infection.
Assuntos
Mycobacterium tuberculosis , Tuberculose Pulmonar , Tuberculose , Humanos , Interleucina-10 , Citocinas , Interleucina-6 , BiomarcadoresRESUMO
BACKGROUND: Severe cases of coronavirus disease 2019 (COVID-19) have increased risk for acute kidney injury (AKI). The exacerbation of the immune response seems to contribute to AKI development, but the immunopathological process is not completely understood. OBJECTIVES: To analyze levels of circulant immune mediators in COVID-19 patients evolving with or without AKI. We have also investigated possible associations of these mediators with viral load and clinical outcomes. METHODS: This is a longitudinal study performed with hospitalized patients with moderate to severe COVID-19. Serum levels of 27 immune mediators were measured by a multiplex immunoassay. Data were analyzed at two timepoints during the follow-up: within the first 13 days of the disease onset (early sample) and from the 14th day to death or hospital discharge (follow-up sample). RESULTS: We studied 82 COVID-19 patients (59.5 ± 17.5 years, 54.9% male). Of these, 34 (41.5%) developed AKI. These patients presented higher SARS-CoV-2 viral load (P = 0.03), higher frequency of diabetes (P = 0.01) and death (P = 0.0004). Overall, AKI patients presented significantly higher and sustained levels (P < 0.05) of CCL-2, CCL-3, CCL-4, CXCL-8, CXCL-10, IFN-γ, IL-2, IL-6, TNF-α, IL-1Ra, IL-10 and VEGF. Importantly, higher levels of CCL-2, CXCL-10, IL-2, TNF-α, IL-10, FGFb, and VEGF were observed in AKI patients independently of death. ROC curves demonstrated that early alterations in CCL-2, CXCL-8, CXCL-10, IFN-γ, IL-6, IL-1Ra and IL-10 show a good predictive value regarding AKI development. Lastly, immune mediators were significantly associated with each other and with SARS-CoV-2 viral load in AKI patients. CONCLUSIONS: COVID-19 associated AKI is accompanied by substantial alterations in circulant levels of immune mediators, which could significantly contribute to the establishment of kidney injury.
Assuntos
Injúria Renal Aguda , COVID-19 , Injúria Renal Aguda/patologia , COVID-19/complicações , Feminino , Humanos , Fatores Imunológicos , Proteína Antagonista do Receptor de Interleucina 1 , Interleucina-10 , Interleucina-2 , Interleucina-6 , Estudos Longitudinais , Masculino , Estudos Retrospectivos , Fatores de Risco , SARS-CoV-2 , Fator de Necrose Tumoral alfa , Fator A de Crescimento do Endotélio VascularRESUMO
BACKGROUND: An effective yellow fever (YF) vaccine has been available since 1937. Nevertheless, questions regarding its use remain poorly understood, such as the ideal dose to confer immunity against the disease, the need for a booster dose, the optimal immunisation schedule for immunocompetent, immunosuppressed, and pediatric populations, among other issues. This work aims to demonstrate that computational tools can be used to simulate different scenarios regarding YF vaccination and the immune response of individuals to this vaccine, thus assisting the response of some of these open questions. RESULTS: This work presents the computational results obtained by a mathematical model of the human immune response to vaccination against YF. Five scenarios were simulated: primovaccination in adults and children, booster dose in adult individuals, vaccination of individuals with autoimmune diseases under immunomodulatory therapy, and the immune response to different vaccine doses. Where data were available, the model was able to quantitatively replicate the levels of antibodies obtained experimentally. In addition, for those scenarios where data were not available, it was possible to qualitatively reproduce the immune response behaviours described in the literature. CONCLUSIONS: Our simulations show that the minimum dose to confer immunity against YF is half of the reference dose. The results also suggest that immunological immaturity in children limits the induction and persistence of long-lived plasma cells are related to the antibody decay observed experimentally. Finally, the decay observed in the antibody level after ten years suggests that a booster dose is necessary to keep immunity against YF.
Assuntos
Modelos Teóricos , Vacina contra Febre Amarela/imunologia , Febre Amarela/prevenção & controle , Adulto , Anticorpos Neutralizantes/sangue , Criança , Humanos , Sistema Imunitário , Imunização Secundária , Hospedeiro Imunocomprometido , Vacinação , Febre Amarela/imunologiaRESUMO
We evaluated the duration of neutralizing antibodies and the status of 17DD vaccine-specific T- and B-cell memory following primary and revaccination regimens for yellow fever (YF) in Brazil. We observed progressive decline of plaque-reduction neutralization test (PRNT) seropositivity and of the levels of effector memory CD4+ and CD8+ T cells, as well as interferon-γ+CD8+ T cells, 10 years after primary vaccination. Revaccination restored PRNT seropositivity as well as the levels of effector memory CD4+, CD8+, and interferon-γ+CD8+ T cells. Moreover, secondary or multiple vaccinations guarantee long-term persistence of PRNT positivity and cell-mediated memory 10 years after booster vaccination. These findings support the relevance of booster doses to heighten the 17DD-YF-specific immune response to guarantee the long-term persistence of memory components. Secondary or multiple vaccinations improved the correlates of protection triggered by 17DD-YF primary vaccination, indicating that booster regimens are needed to achieve efficient immunity in areas with high risk for virus transmission.
Assuntos
Imunidade , Imunização Secundária , Vacina contra Febre Amarela/imunologia , Febre Amarela/imunologia , Febre Amarela/prevenção & controle , Vírus da Febre Amarela/imunologia , Adolescente , Adulto , Idoso , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Brasil/epidemiologia , Vírus da Dengue/imunologia , Feminino , Humanos , Imunidade Celular , Imunoglobulina G/imunologia , Memória Imunológica , Masculino , Pessoa de Meia-Idade , Testes de Neutralização , Vigilância em Saúde Pública , Vacina contra Febre Amarela/administração & dosagem , Adulto JovemRESUMO
BACKGROUND: Zika virus is an emerging arbovirus of the family Flaviviridae and genus Flavivirus that until 2007 was restricted to a few cases of mild illness in Africa and Asia. CASE PRESENTATION: We report a case of atrial fibrillation disclosed during an acute Zika virus infection in a 49-year-old man. Different biological samples were analyzed for the molecular diagnosis of Zika by real-time PCR, however only the saliva specimen was positive. The patient's wife tested positive in the serum sample, although she was an asymptomatic carrier. Moreover, a complete overview of patient's biomarkers, including cytokines, chemokines, and growth-factors levels, was analyzed and compared to gender and age matching non-infected controls, as well as other Zika infected patients, considering the 95%CI of the mean values. Elevated levels of CXCL8, CCL11, CCL2, CXCL10, IL-1ß, IL-6, TNF-α, IFN-γ, IL-17, IL-1Ra, IL-4, IL-9, FGF-basic, PDGF, G-CSF, and GM-CSF were observed in the Atrial fibrillation patient, in contrast to uninfected controls. Furthermore, increased levels of CCL5, IL-1ß, TNF-α, IFN-γ, IL-9, G-CSF, and GM-CSF were observed only in the atrial fibrillation patient, when compared to other Zika patients. CONCLUSIONS: To our knowledge, this is the first description of this type of cardiac disorder in Zika patients which may be considered another atypical manifestation during Zika virus infection.
Assuntos
Fibrilação Atrial/diagnóstico , Fibrilação Atrial/etiologia , Infecção por Zika virus/complicações , Infecção por Zika virus/virologia , Zika virus , Fibrilação Atrial/metabolismo , Biomarcadores , Citocinas/metabolismo , Eletrocardiografia , Testes de Função Cardíaca , Humanos , Mediadores da Inflamação , Masculino , Pessoa de Meia-Idade , Radiografia Torácica , Zika virus/classificação , Zika virus/genéticaRESUMO
BACKGROUND: Infection with Zika virus (ZIKV) manifests in a broad spectrum of disease ranging from mild illness to severe neurological complications and little is known about Zika immunopathogenesis. OBJECTIVES: To define the immunologic biomarkers that correlate with acute ZIKV infection. METHODS: We characterized the levels of circulating cytokines, chemokines, and growth factors in 54 infected patients of both genders at five different time points after symptom onset using microbeads multiplex immunoassay; comparison to 100 age-matched controls was performed for statistical analysis and data mining. FINDINGS: ZIKV-infected patients present a striking systemic inflammatory response with high levels of pro-inflammatory mediators. Despite the strong inflammatory pattern, IL-1Ra and IL-4 are also induced during the acute infection. Interestingly, the inflammatory cytokines IL-1ß, IL-13, IL-17, TNF-α, and IFN-γ; chemokines CXCL8, CCL2, CCL5; and the growth factor G-CSF, displayed a bimodal distribution accompanying viremia. While this is the first manuscript to document bimodal distributions of viremia in ZIKV infection, this has been documented in other viral infections, with a primary viremia peak during mild systemic disease and a secondary peak associated with distribution of the virus to organs and tissues. MAIN CONCLUSIONS: Biomarker network analysis demonstrated distinct dynamics in concurrence with the bimodal viremia profiles at different time points during ZIKV infection. Such a robust cytokine and chemokine response has been associated with blood-brain barrier permeability and neuroinvasiveness in other flaviviral infections. High-dimensional data analysis further identified CXCL10, a chemokine involved in foetal neuron apoptosis and Guillain-Barré syndrome, as the most promising biomarker of acute ZIKV infection for potential clinical application.
Assuntos
Quimiocinas/imunologia , Citocinas/sangue , Infecção por Zika virus/imunologia , Doença Aguda , Adulto , Biomarcadores/sangue , Estudos de Casos e Controles , Quimiocina CXCL10/sangue , Quimiocinas/sangue , Estudos Transversais , Citocinas/imunologia , Feminino , Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Infecção por Zika virus/sangue , Infecção por Zika virus/complicaçõesRESUMO
BACKGROUND: The live attenuated 17DD Yellow Fever vaccine is one of the most successful prophylactic interventions for controlling disease expansion ever designed and utilized in larger scale. However, increase on worldwide vaccine demands and manufacturing restrictions urge for more detailed dose sparing studies. The establishment of complementary biomarkers in addition to PRNT and Viremia could support a secure decision-making regarding the use of 17DD YF vaccine subdoses. The present work aimed at comparing the serum chemokine and cytokine kinetics triggered by five subdoses of 17DD YF Vaccine. METHODS: Neutralizing antibody titers, viremia, cytokines and chemokines were tested on blood samples obtained from eligible primary vaccinees. RESULTS AND DISCUSSION: The results demonstrated that a fifty-fold lower dose of 17DD-YF vaccine (587 IU) is able to trigger similar immunogenicity, as evidenced by significant titers of anti-YF PRNT. However, only subdoses as low as 3,013 IU elicit viremia kinetics with an early peak at five days after primary vaccination equivalent to the current dose (27,476 IU), while other subdoses show a distinct, lower in magnitude and later peak at day 6 post-vaccination. Although the subdose of 587 IU is able to trigger equivalent kinetics of IL-8/CXCL-8 and MCP-1/CCL-2, only the subdose of 3,013 IU is able to trigger similar kinetics of MIG/CXCL-9, pro-inflammatory (TNF, IFN-γ and IL-2) and modulatory cytokines (IL-5 and IL-10). CONCLUSIONS: The analysis of serum biomarkers IFN-γ and IL-10, in association to PRNT and viremia, support the recommendation of use of a ten-fold lower subdose (3,013 IU) of 17DD-YF vaccine.
Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Relação Dose-Resposta Imunológica , Vacina contra Febre Amarela/administração & dosagem , Febre Amarela/prevenção & controle , Adolescente , Adulto , Biomarcadores/sangue , Citocinas/sangue , Citometria de Fluxo , Humanos , Cinética , Masculino , Vacinação/métodos , Vacinas Atenuadas/administração & dosagem , Viremia/sangue , Adulto JovemRESUMO
Between 2016 and 2018, Brazil experienced major sylvatic yellow fever (YF) outbreaks that caused hundreds of casualties, with Minas Gerais (MG) being the most affected state. These outbreaks provided a unique opportunity to assess the immune response triggered by the wild-type (WT) yellow fever virus (YFV) in humans. The plaque reduction neutralization test (PRNT) is currently the standard method to assess the humoral immune response to YFV by measuring neutralizing antibodies (nAbs). The present study aimed to evaluate the humoral immune response of patients from the 2017-2018 sylvatic YF outbreak in MG with different disease outcomes by using PRNTs with a WT YFV strain, isolated from the 2017-2018 outbreak, and a vaccine YFV strain. Samples from naturally infected YF patients were tested, in comparison with healthy vaccinees. Results showed that both groups presented different levels of nAb against the WT and vaccine strains, and the levels of neutralization against the strains varied homotypically and heterotypically. Results based on the geometric mean titers (GMTs) suggest that the humoral immune response after a natural infection of YFV can reach higher levels than that induced by vaccination (GMT of patients against WT YFV compared to GMT of vaccinees, P < 0.0001). These findings suggest that the humoral immune responses triggered by the vaccine and WT strains of YFV are different, possibly due to genetic and antigenic differences between these viruses. Therefore, current means of assessing the immune response in naturally infected YF individuals and immunological surveillance methods in areas with intense viral circulation may need to be updated.IMPORTANCEYellow fever is a deadly febrile disease caused by the YFV. Despite the existence of effective vaccines, this disease still represents a public health concern worldwide. Much is known about the immune response against the vaccine strains of the YFV, but recent studies have shown that it differs from that induced by WT strains. The extent of this difference and the mechanisms behind it are still unclear. Thus, studies aimed to better understand the immune response against this virus are relevant and necessary. The present study evaluated levels of neutralizing antibodies of yellow fever patients from recent outbreaks in Brazil, in comparison with healthy vaccinees, using plaque reduction neutralization tests with WT and vaccine YFV strains. Results showed that the humoral immune response in naturally infected patients was higher than that induced by vaccination, thus providing new insights into the immune response triggered against these viruses.
Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Surtos de Doenças , Imunidade Humoral , Vacina contra Febre Amarela , Febre Amarela , Vírus da Febre Amarela , Febre Amarela/imunologia , Febre Amarela/epidemiologia , Febre Amarela/virologia , Humanos , Brasil/epidemiologia , Vírus da Febre Amarela/imunologia , Vírus da Febre Amarela/genética , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Masculino , Vacina contra Febre Amarela/imunologia , Feminino , Adulto , Pessoa de Meia-Idade , Vacinação , Testes de Neutralização , Adulto Jovem , Idoso , AdolescenteRESUMO
The present study aimed at investigating whether the hydroxychloroquine (HCQ) treatment would impact the neutralizing antibody production, viremia levels and the kinetics of serum soluble mediators upon planned 17DD-Yellow Fever (YF) primovaccination (Bio-Manguinhos-FIOCRUZ) of primary Sjögren's syndrome (pSS). A total of 34 pSS patients and 23 healthy controls (HC) were enrolled. The pSS group was further categorized according to the use of HCQ (HCQ and Non-HCQ). The YF-plaque reduction neutralization test (PRNT ≥1:50), YF viremia (RNAnemia) and serum biomarkers analyses were performed at baseline and subsequent time-points (Day0/Day3-4/Day5-6/Day7/Day14-D28). The pSS group showed PRNT titers and seropositivity rates similar to those observed for HC (GeoMean = 238 vs 440, p = .11; 82% vs 96%, p = .13). However, the HCQ subgroup exhibited lower seroconversion rates as compared to HC (GeoMean = 161 vs 440, p = .04; 69% vs 96%, p = .02) and Non-HQC (GeoMean = 161 vs 337, p = .582; 69% vs 94%, p = .049). No differences in YF viremia were observed amongst subgroups. Serum biomarkers analyses demonstrated that HCQ subgroup exhibited increased levels of CCL2, CXL10, IL-6, IFN-γ, IL1-Ra, IL-9, IL-10, and IL-2 at baseline and displayed a consistent increase of several biomarkers along the kinetics timeline up to D14-28. These results indicated that HCQ subgroup exhibited a deficiency in assembling YF-specific immune response elicited by 17DD-YF primovaccination as compared to Non-HCQ subgroup. Our findings suggested that hydroxychloroquine is associated with a decrease in the humoral immune response after 17DD-YF primovaccination.
Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Hidroxicloroquina , Soroconversão , Síndrome de Sjogren , Febre Amarela , Humanos , Hidroxicloroquina/uso terapêutico , Síndrome de Sjogren/tratamento farmacológico , Síndrome de Sjogren/imunologia , Feminino , Pessoa de Meia-Idade , Masculino , Adulto , Febre Amarela/imunologia , Febre Amarela/prevenção & controle , Anticorpos Antivirais/sangue , Anticorpos Neutralizantes/sangue , Vacina contra Febre Amarela/imunologia , Idoso , Viremia/tratamento farmacológico , Viremia/imunologia , Vírus da Febre Amarela/imunologia , Citocinas/sangue , Biomarcadores/sangueRESUMO
Massive vaccination positively impacted the SARS-CoV-2 pandemic, being a strategy to increase the titers of neutralizing antibodies (NAbs) in the population. Assessing NAb levels and understanding the kinetics of NAb responses is critical for evaluating immune protection. In this study, we optimized and validated a PRNT50 assay to assess 50% virus neutralization and evaluated its accuracy to measure NAbs to the original strain or variant of SARS-CoV-2. The optimal settings were selected, such as the cell (2 × 105 cells/well) and CMC (1.5%) concentrations and the viral input (~60 PFU/well) for PRNT-SARS-CoV-2 with cut-off point = 1.64 log5 based on the ROC curve (AUC = 0.999). The validated PRNT-SARS-CoV-2 assay presented high accuracy with an intraassay precision of 100% for testing samples with different NAb levels (low, medium, and high titers). The method displays high selectivity without cross-reactivity with dengue (DENV), measles (MV), zika (ZIKV), and yellow fever (YFV) viruses. In addition, the standardized PRNT-SARS-CoV-2 assay presented robustness when submitted to controlled variations. The validated PRNT assay was employed to test over 1000 specimens from subjects with positive or negative diagnoses for SARS-CoV-2 infection. Patients with severe COVID-19 exhibited higher levels of NAbs than those presenting mild symptoms for both the Wuhan strain and Omicron. In conclusion, this study provides a detailed description of an optimized and validated PRNT50 assay to monitor immune protection and to subsidize surveillance policies applied to epidemiologic studies of COVID-19.
RESUMO
The present study aimed at evaluating the YF-specific neutralizing antibody profile besides a multiparametric analysis of phenotypic/functional features of cell-mediated response elicited by the 1/5 fractional dose of 17DD-YF vaccine, administered as a single subcutaneous injection. The immunological parameters of each volunteer was monitored at two time points, referred as: before (Day 0) [Non-Vaccinated, NV(D0)] and after vaccination (Day 30-45) [Primary Vaccinees, PV(D30-45)]. Data demonstrated high levels of neutralizing antibodies for PV(D30-45) leading to a seropositivity rate of 93%. A broad increase of systemic soluble mediators with a mixed profile was also observed for PV(D30-45), with IFN-γ and TNF-α presenting the highest baseline fold changes. Integrative network mapping of soluble mediators showed increased correlation numbers in PV(D30-45) as compared to NV(D0) (532vs398). Moreover, PV(D30-45) exhibited increased levels of Terminal Effector (CD45RA+CCR7-) CD4+ and CD8+ T-cells and Non-Classical memory B-cells (IgD+CD27+). Dimensionality reduction of Mass Cytometry data further support these findings. A polyfunctional cytokine profile (TNF-α/IFN-γ/IL-10/IL-17/IL-2) of T and B-cells was observed upon in vitro antigen recall. Mapping and kinetics timeline of soluble mediator signatures for PV(D30-45) further confirmed the polyfunctional profile upon long-term in vitro culture, mediated by increased levels of IFN-γ and TNF-α along with decreased production of IL-10. These findings suggest novel insights of correlates of protection elicited by the 1/5 fractional dose of 17DD-YF vaccine.
Assuntos
Vacina contra Febre Amarela , Febre Amarela , Humanos , Adulto , Anticorpos Neutralizantes , Interleucina-10 , Anticorpos Antivirais , Fator de Necrose Tumoral alfa , Linfócitos T CD8-Positivos , VacinaçãoRESUMO
The re-emergence of yellow fever (YF) urged new mass vaccination campaigns and, in 2017, the World Health Organization approved the use of the fractional dose (FD) of the YF vaccine due to stock shortage. In an observational cross-sectional investigation, we have assessed viremia, antibodies, soluble mediators and effector and memory T and B-cells induced by primary vaccination of volunteers with FD and standard dose (SD). Similar viremia and levels of antibodies and soluble markers were induced early after immunization. However, a faster decrease in the latter was observed after SD. The FD led to a sustained expansion of helper T-cells and an increased expression of activation markers on T-cells early after vaccination. Although with different kinetics, expansion of plasma cells was induced upon SD and FD immunization. Integrative analysis reveals that FD induces a more complex network involving follicular helper T cells and B-cells than SD. Our findings substantiate that FD can replace SD inducing robust correlates of protective immune response against YF.
RESUMO
Immunobiography describes the life-long effects of exogenous or endogenous stimuli on remodeling of immune cell biology, including the development of memory T and B-cells. The present study aimed at investigating the rhythms of changes in phenotypic features of memory T and B-cells along childhood and adolescence. A descriptive-observational investigation was conducted including 812 healthy volunteers, clustered into six consecutive age groups (9Mths-1Yr; 2Yrs; 3-4Yrs; 5-7Yrs; 8-10Yrs; 11-18Yrs). Immunophenotypic analysis of memory T-cell (CD4+ and CD8+) and B-cell subsets were performed by flow cytometry. The results pointed out that memory-related biomarkers of T and B-cells displayed a bimodal profile along healthy childhood and adolescence, regardless of sex. The first stage of changes occurs around 2Yrs, with predominance of naive cells, while the second and more prominent wave occurs around the age 8-10Yrs, with the prevalence of memory phenotypes. The neighborhood connectivity profile analysis demonstrated that the number of correlations reaches a peak at 11-18Yrs and lower values along the childhood. Males presented higher and conserved number of correlations when compared to females. Altogether, our results provide new insights into immunobiography and a better understanding of interactions among the cellular subsets studied here during childhood and adolescence.
Assuntos
Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Masculino , Feminino , Humanos , Adolescente , Criança , Linfócitos B , Imunofenotipagem , Citometria de Fluxo , Memória Imunológica , Subpopulações de Linfócitos TRESUMO
New variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have emerged, imposing the need for periodic booster doses. However, whether booster doses should be applied to the entire population or groups, and the booster doses interval, remains unclear. In this study, we evaluated humoral reactivity kinetics from before the first dose to 180 days after the third booster dose in different schedules in a well-controlled health worker cohort. Among the 2,506 employees, the first 500 vaccinated health workers were invited to participate. The third booster dose was administered 8 months after the first dose. Among the invited participants, 470 were included in the study; 258 received inactivated vaccine CoronaVac (VAC group) and 212 received viral vector vaccine ChAdOx1 (AZV group). The groups were homogeneous in terms of age and sex. 347 participants were followed up after the booster dose with AZV or BNT162b2 (Pfizer, BNT group): 63 with VAC/AZV, 117 with VAC/BNT, 72 with the AZV/AZV and 95 with AZV/BNT schedules. Blood samples were collected immediately before, 28 days after each dose and 180 days after the primary vaccination and booster dose. Anti-SARS-CoV-2 antibodies were measured by chemiluminescence and plaque reduction neutralization test (PRNT). Plasma immune mediators were quantified using a multiplex immunoassay. Geometric mean of antibodies increased 28 days after the second dose with 100 % seroconversion rate in both groups and decreased 180 days after the first dose. In the baseline-seropositive VAC group, the levels of plasma immune mediators increased after the second dose. Booster dose was applied at 4-6 months after the primary vaccination. Heterologous booster in VAC or AZV primary vaccinees were effective maintaining the titers of anti-SARS-CoV-2 antibodies even after 6 months of follow-up. The heterologous schedule induced higher and stable antibody reactivity, even after 180 days, protecting to ancestral (Wuhan), Delta, and Omicron variants.
RESUMO
Introduction: SARS-CoV-2 infection during pregnancy can induce changes in the maternal immune response, with effects on pregnancy outcome and offspring. This is a cross-sectional observational study designed to characterize the immunological status of pregnant women with convalescent COVID-19 at distinct pregnancy trimesters. The study focused on providing a clear snapshot of the interplay among serum soluble mediators. Methods: A sample of 141 pregnant women from all prenatal periods (1st, 2nd and 3rd trimesters) comprised patients with convalescent SARS-CoV-2 infection at 3-20 weeks after symptoms onset (COVID, n=89) and a control group of pre-pandemic non-infected pregnant women (HC, n=52). Chemokine, pro-inflammatory/regulatory cytokine and growth factor levels were quantified by a high-throughput microbeads array. Results: In the HC group, most serum soluble mediators progressively decreased towards the 2nd and 3rd trimesters of pregnancy, while higher chemokine, cytokine and growth factor levels were observed in the COVID patient group. Serum soluble mediator signatures and heatmap analysis pointed out that the major increase observed in the COVID group related to pro-inflammatory cytokines (IL-6, TNF-α, IL-12, IFN-γ and IL-17). A larger set of biomarkers displayed an increased COVID/HC ratio towards the 2nd (3x increase) and the 3rd (3x to 15x increase) trimesters. Integrative network analysis demonstrated that HC pregnancy evolves with decreasing connectivity between pairs of serum soluble mediators towards the 3rd trimester. Although the COVID group exhibited a similar profile, the number of connections was remarkably lower throughout the pregnancy. Meanwhile, IL-1Ra, IL-10 and GM-CSF presented a preserved number of correlations (≥5 strong correlations in HC and COVID), IL-17, FGF-basic and VEGF lost connectivity throughout the pregnancy. IL-6 and CXCL8 were included in a set of acquired attributes, named COVID-selective (≥5 strong correlations in COVID and <5 in HC) observed at the 3rd pregnancy trimester. Discussion and conclusion: From an overall perspective, a pronounced increase in serum levels of soluble mediators with decreased network interplay between them demonstrated an imbalanced immune response in convalescent COVID-19 infection during pregnancy that may contribute to the management of, or indeed recovery from, late complications in the post-symptomatic phase of the SARS-CoV-2 infection in pregnant women.
Assuntos
COVID-19 , Gestantes , Humanos , Gravidez , Feminino , Interleucina-17 , COVID-19/terapia , Interleucina-6 , Estudos Transversais , SARS-CoV-2 , Citocinas , Quimiocinas , Resultado da GravidezRESUMO
We investigated whether swim training protects skeletal muscle from oxidative damage in response to a maximum progressive exercise. First, we investigated the effect of swim training on the activities of the antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), in the gastrocnemius muscle of C57Bl/6 mice, 48 h after the last training session. Mice swam for 90 min, twice a day, for 5 weeks at 31°C (± 1°C). The activities of SOD and CAT were increased in trained mice (P < 0.05) compared to untrained group. However, no effect of training was observed in the activity of GPx. In a second experiment, trained and untrained mice were submitted to a maximum progressive swim test. Compared to control mice (untrained, not acutely exercised), malondialdehyde (MDA) levels were increased in the skeletal muscle of both trained and untrained mice after maximum swim. The activity of GPx was increased in the skeletal muscle of both trained and untrained mice, while SOD activity was increased only in trained mice after maximum swimming. CAT activity was increased only in the untrained compared to the control group. Although the trained mice showed increased activity of citrate synthase in skeletal muscle, swim performance was not different compared to untrained mice. Our results show an imbalance in the activities of SOD, CAT and GPx in response to swim training, which could account for the oxidative damage observed in the skeletal muscle of trained mice in response to maximum swim, resulting in the absence of improved exercise performance.
Assuntos
Músculo Esquelético/fisiologia , Oxirredutases/metabolismo , Condicionamento Físico Animal/métodos , Resistência Física/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Natação/fisiologia , Análise e Desempenho de Tarefas , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/lesões , OxirreduçãoRESUMO
BACKGROUND: The live attenuated yellow fever (YF) vaccines have been available for decades and are considered highly effective and one of the safest vaccines worldwide. METHODS: The impact of YF-17DD-antigens recall on cytokine profiles of YF-17DD-vaccinated children were characterized using short-term cultures of whole blood samples and single-cell flow cytometry. This study enrolled seroconverters and nonseroconverters after primovaccination (PV-PRNT⺠and PV-PRNTâ»), seroconverters after revaccination (RV-PRNTâº), and unvaccinated volunteers (UV-PRNTâ»). RESULTS: The analysis demonstrated in the PV-PRNT⺠group a balanced involvement of pro-inflammatory/regulatory adaptive immunity with a prominent participation of innate immunity pro-inflammatory events (IL-12⺠and TNF-α⺠NEU and MON). Using the PV-PRNT⺠cytokine signature as a reference profile, PV-PRNTâ» presented a striking lack of innate immunity proinflammatory response along with an increased adaptive regulatory profile (IL-4âºCD4⺠T cells and IL-10⺠and IL-5âºCD8⺠T cells). Conversely, the RV-PRNT⺠shifted the overall cytokine signatures toward an innate immunity pro-inflammatory profile and restored the adaptive regulatory response. CONCLUSIONS: The data demonstrated that the overall cytokine signature was associated with the levels of PRNT antibodies with a balanced innate/adaptive immunity with proinflammatory/regulatory profile as the hallmark of PV-PRNT(MEDIUMâº), whereas a polarized regulatory response was observed in PV-PRNTâ» and a prominent proinflammatory signature was the characteristic of PV-PRNT(HIGHâº).