Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Chem Soc Rev ; 53(16): 8457-8512, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39036944

RESUMO

Recent advancements in materials science have shed light on the potential of exploring hierarchical assemblies of molecules on surfaces, driven by both fundamental and applicative challenges. This field encompasses diverse areas including molecular storage, drug delivery, catalysis, and nanoscale chemical reactions. In this context, the utilization of nanotube templates (NTs) has emerged as promising platforms for achieving advanced one-dimensional (1D) molecular assemblies. NTs offer cylindrical, crystalline structures with high aspect ratios, capable of hosting molecules both externally and internally (Mol@NT). Furthermore, NTs possess a wide array of available diameters, providing tunability for tailored assembly. This review underscores recent breakthroughs in the field of Mol@NT. The first part focuses on the diverse panorama of structural properties in Mol@NT synthesized in the last decade. The advances in understanding encapsulation, adsorption, and ordering mechanisms are detailed. In a second part, the review highlights the physical interactions and photophysics properties of Mol@NT obtained by the confinement of molecules and nanotubes in the van der Waals distance regime. The last part of the review describes potential applicative fields of these 1D heterostructures, providing specific examples in photovoltaics, luminescent materials, and bio-imaging. A conclusion gathers current challenges and perspectives of the field to foster discussion in related communities.

2.
Chemistry ; 28(5): e202103545, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-34850463

RESUMO

Fe/N/C single-atom catalysts containing Fe-Nx sites prepared by pyrolysis are promising cathode materials for fuel cells and metal-air batteries due to their high oxygen reduction reaction (ORR) activities. We have developed iron complexes containing N2- or N3-chelating coordination structures with preorganized aromatic rings in a 1,12-diazatriphenylene framework tethering bromo substituents as precursors to precisely construct Fe-N4 sites in an Fe/N/C catalyst. One-step pyrolysis of the iron complex with carbon black forms atomically dispersed Fe-N4 sites without iron aggregates. X-ray absorption spectroscopy (XAS) and electrochemical measurements revealed that the iron complex with N3-coordination is more effectively converted to Fe-N4 sites catalyzing ORR with a TOF value of 0.21 e site-1 s-1 at 0.8 V vs. RHE. This indicates that the formation of Fe-N4 sites is controlled by precise tuning of the chemical structure of the iron complex precursor.

3.
J Chem Phys ; 156(10): 104302, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35291794

RESUMO

Atomically precise graphene quantum dots synthesized by bottom-up chemistry are promising versatile single emitters with potential applications for quantum photonic technologies. Toward a better understanding and control of graphene quantum dot (GQD) optical properties, we report on single-molecule spectroscopy at cryogenic temperature. We investigate the effect of temperature on the GQDs' spectral linewidth and vibronic replica, which we interpret building on density functional theory calculations. Finally, we highlight that the vibronic signatures are specific to the GQD geometry and can be used as a fingerprint for identification purposes.

4.
J Am Chem Soc ; 143(41): 17109-17116, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34617738

RESUMO

Sensitization of graphene with inorganic semiconducting nanostructures has been demonstrated as a powerful strategy to boost its optoelectronic performance. However, the limited tunability of optical properties and toxicity of metal cations in the inorganic sensitizers prohibits their widespread applications, and the in-depth understanding of the essential interfacial charge-transfer process within such hybrid systems remains elusive. Here, we design and develop high-quality nanographene (NG) dispersions with a large-scale production using high-shear mixing exfoliation. The physisorption of these NG molecules onto graphene gives rise to the formation of graphene-NG van der Waals heterostructures (VDWHs), characterized by strong interlayer coupling through π-π interactions. As a proof of concept, photodetectors fabricated on the basis of such VDWHs show ultrahigh responsivity up to 4.5 × 107 A/W and a specific detectivity reaching 4.6 × 1013 Jones, being competitive with the highest values obtained for graphene-based photodetectors. The outstanding device characteristics are attributed to the efficient transfer of photogenerated holes from NGs to graphene and the long-lived charge separation at graphene-NG interfaces (beyond 1 ns), as elucidated by ultrafast terahertz (THz) spectroscopy. These results demonstrate the great potential of such graphene-NG VDWHs as prototypical building blocks for high-performance, low-toxicity optoelectronics.

5.
Org Biomol Chem ; 16(36): 6767-6772, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30191229

RESUMO

The fabrication of nanotube-based functional materials is still limited by the difficulty in incorporating highly engineered molecules onto the nanotube surface. To overcome this difficulty, the development of procedures involving two subsequent reaction steps on the nanotubes appeared particularly promising. It was previously demonstrated that "click chemistry" (CuAAC) permits efficiently functionalising nanotubes with a wide variety of materials (from inorganic to biological). In this work, we present an original strategy based on Hay coupling (i.e. the oxidative coupling between triple bonds) to fabricate nanotube-porphyrin conjugates. Porphyrins containing ethynyl functional groups were attached on single-walled carbon nanotubes (SWNTs) bearing phenylacetylene groups and the resulting materials were fully characterised.

6.
Org Biomol Chem ; 16(43): 8106-8114, 2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30328882

RESUMO

The outstanding properties of porphyrins and the extreme versatility of their synthesis and their functionalisation constitute real assets for the fabrication of opto- and electroactive materials or for biological applications. In the large collection of porphyrinic structures, meso-substituted anthracenylporphyrins are among the less studied. Here, we synthesised the 5,10,15,20-tetra-bromoanthracenylporphyrin (BrTAP) and we investigated its chemical reactivity by post-synthetic modification using Suzuki-Miyaura cross coupling reactions with a series of boronic acids to generate a collection of original tetra-anthracenyl porphyrin based molecules: tetraphenylanthracenylporphyrin (TPAP), tetratolylanthracenylporphyrin (TTAP), tetramethoxyphenylanthracenylporphyrin (TMPAP), tetranaphthylanthracenylporphyrin (TNAP) and tetrapyrenylanthracenylporphyrin (TPyAP). Optical characterisations of these modified porphyrins showed, in most cases, only emission of the porphyrin in the visible region with extinction of the fluorescence of PAHs in the UV or visible region.

7.
Nano Lett ; 17(11): 6778-6782, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-29045145

RESUMO

We study the ability of porphyrin molecules to cooperate upon adsorption on the sp2 curved surface of carbon nanotube. We discuss the role of the phenyl substituents in the cooperativity of the functionalization reaction. Moreover, a specific spatial organization of the molecules around the nanotube is unveiled through polarization sensitive experiments. Furthermore, we observe an increase of the energy splitting of the porphyrin main transition upon the adsorption on the nanotube. This effect, interpreted as a Davydov splitting, is analyzed quantitatively using a dipole-dipole coupling model. This study demonstrates the ability of porphyrin molecules to create an organized self-assembled layer at the surface of the nanotubes where molecules are electronically coupled together.

8.
Chemphyschem ; 18(19): 2777-2781, 2017 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-28771994

RESUMO

The amazing properties of 2D materials are envisioned to revolutionize several domains such as flexible electronics, electrocatalysis, or biosensing. Herein we introduce scanning electrochemical microscopy (SECM) as a tool to investigate molybdenum disulfide in a straightforward fashion, providing localized information regarding the electronic transport within chemical vapor deposition (CVD)-grown crystalline MoS2 single layers having micrometric sizes. Our investigations show that within flakes assemblies some flakes are well electrically interconnected, with no detectable contact resistance, whereas others are not electrically connected at all, independent of the size of the physical contact between them. Overall, the work shows how the complex electronic behavior of MoS2 flake assemblies (semiconducting nature, contact quality between flakes) can be investigated with SECM.

9.
Chemistry ; 21(38): 13437-44, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26270238

RESUMO

The assembly of imidazole-functionalized phenanthroline-strapped zinc porphyrins (ZnPorphen) with alkyl or polyethylene glycol (PEG) side chains was studied in solution and by AFM after casting on highly oriented pyrolytic graphite (HOPG) or mica. The nature of the solvent and its evaporation time influenced the morphology of the objects observed. On HOPG, short rods of about 100 nm were observed after fast evaporation of solutions of the alkyl derivatives in CHCl3 , THF, or pyridine, whereas islands of aligned rows of longer wires were obtained from methylcyclohexane (MCH). Slow evaporation of MCH led to a three-dimensional assembly. The PEG porphyrin assembled into short wires on HOPG or fibers on mica after slow evaporation of solutions in THF. This study shows the role of surface-molecule interactions in the interfacial assembly of ZnPorphen derivatives and contributes to understanding the parameters that control their noncovalent assembly into molecular wires on a surface.

10.
J Am Chem Soc ; 136(17): 6348-54, 2014 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-24717022

RESUMO

The development of innovative techniques for the functionalization of carbon nanotubes that preserve their exceptional quality, while robustly enriching their properties, is a central issue for their integration in applications. In this work, we describe the formation of a covalent network of porphyrins around MWNT surfaces. The approach is based on the adsorption of cobalt(II) meso-tetraethynylporphyrins on the nanotube sidewalls followed by the dimerization of the triple bonds via Hay-coupling; during the reaction, the nanotube acts as a template for the formation of the polymeric layer. The material shows an increased stability resulting from the cooperative effect of the multiple π-stacking interactions between the porphyrins and the nanotube and by the covalent links between the porphyrins. The nanotube hybrids were fully characterized and tested as the supported catalyst for the oxygen reduction reaction (ORR) in a series of electrochemical measurements under acidic conditions. Compared to similar systems in which monomeric porphyrins are simply physisorbed, MWNT-CoP hybrids showed a higher ORR activity associated with a number of exchanged electrons close to four, corresponding to the complete reduction of oxygen into water.

11.
J Am Chem Soc ; 136(13): 4833-6, 2014 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-24628490

RESUMO

Herein, we describe a new localized functionalization method of graphene oxide (GO) deposited on a silicon oxide surface. The functionalization starts with the reduction of GO by electrogenerated naphthalene radical anions. The source of reducers is a microelectrode moving close to the substrate in a typical scanning electrochemical microscopy (SECM) configuration. Then, the recovery of electronic conductivity upon reduction enables the selective electrochemical functionalization of the patterns. The illustrative example is the electrografting of reduced-GO with a diazonium salt bearing a protonated amino group that can further immobilize gold nanoparticles by simple immersion. This study opens new routes for the construction of multifunctional patterned surfaces.

12.
Top Curr Chem ; 348: 95-126, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23756847

RESUMO

This chapter aims to present recent examples of supramolecular functionalization of carbon nanotubes. The non-covalent functionalization appears as a solution for the future applications in nanotechnologies since it allows the functionalization and manipulation of nanotubes without the introduction of sp (3) defects in the π-conjugated system. Thus, the optical and electronic properties of the nanotubes remain preserved. In the first part of this chapter, we present the use of surfactant for the dispersion of nanotubes and its application for sorting. Then we report several examples of functionalization of nanotubes based on π-stacking interactions with pyrene derivatives. Finally, in the last part we review the wrapping of photo/electroactive polymers around the nanotube sidewalls. We put a particular focus on polyflurorene-based polymers and we show their utilization for the separation of nanotubes in diameter and chirality.

13.
Org Biomol Chem ; 12(17): 2778-83, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24668242

RESUMO

The interest in the functionalization of oligonucleotides with organic molecules has grown considerably over the last decade. In this work, we report on the synthesis and characterization of porphyrin-oligonucleotide hybrids containing one to four DNA strands (P1-P4). The hybrid P4, which inserts one porphyrin and four DNA fragments, was combined with gold nanoparticles and imaged by transmission electron microscopy.


Assuntos
DNA/química , Ouro/química , Nanopartículas Metálicas/química , Oligonucleotídeos/química , Porfirinas/química , Espectroscopia de Ressonância Magnética , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Transmissão , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
14.
ACS Nano ; 18(14): 9886-9894, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38547872

RESUMO

Monolayers of transition metal dichalcogenides (2D TMDs) experience strong modulation of their optical properties when the charge density is varied. Indeed, the transition from carriers composed mostly of excitons at low electron density to a situation in which trions dominate at high density is accompanied by a significant evolution of both the refractive index and the extinction coefficient. Using optical interference reflection microscopy at the excitonic wavelength, this (n, κ)-q relationship can be exploited to directly image the electron density in operating TMD devices. In this work, we show how this technique, which we call XRM (excitonic reflection microscopy), can be used to study charge distribution in MoS2 field-effect transistors with subsecond throughput, in wide-field mode. Complete maps of the charge distribution in the transistor channel at any drain and gate bias polarization point (VDS, VGS) are obtained, at ∼3 orders of magnitude faster than with scanning probe techniques such as KPFM. We notably show how the advantages of XRM enable real-time mapping of bias-dependent charge inhomogeneities, the study of resistive delays in 2D polycrystalline networks, and the evaluation of the VDS vs VGS competition to control the charge distribution in active devices.

15.
Anal Chem ; 85(3): 1812-8, 2013 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-23259661

RESUMO

The present article introduces a rapid, very sensitive, contactless method to measure the local surface conductivity with Scanning Electrochemical Microscopy (SECM) and obtain conductivity maps of heterogeneous substrates. It is demonstrated through the study of Graphene Oxide (GO) thin films deposited on glass. The adopted substrate preparation method leads to conductivity disparities randomly distributed over approximately 100 µm large zones. Data interpretation is based on an equation system with the dimensionless conductivity as the only unknown parameter. A detailed prospection provides a consistent theoretical framework for the reliable quantification of the conductivity of GO with SECM. Finally, an analytical approximation of the conductivity as a function of the feedback current is proposed, making any further interpretation procedure straightforward, as it does not require iterative numerical simulations any more. The present work thus provides not only valuable information on the kinetics of GO reduction in mild conditions but also a general and simplified interpretation framework that can be extended to the quantitative conductivity mapping of other types of substrates.

16.
Chemistry ; 19(34): 11374-81, 2013 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-23832804

RESUMO

Herein the synthesis, characterization, and organization of a first-generation dendritic fulleropyrrolidine bearing two pending porphyrins are reported. Both the dendron and the fullerene derivatives were synthesized by Cu(I) -catalyzed alkyne-azide cycloaddition (CuAAC). The electron-donor-acceptor conjugate possesses a shape that allows the formation of supramolecular complexes by encapsulation of C60 within the jaws of the two porphyrins of another molecule. The interactions between the two photoactive units (i.e., C60 and Zn-porphyrin) were confirmed by cyclic voltammetry as well as by steady-state and time-resolved spectroscopy. For example, a shift of about 85 mV was found for the first reduction of C60 in the electron-donor-acceptor conjugate compared with the parent molecules, which indicates that C60 is included in the jaws of the porphyrin. The fulleropyrrolidine compound exhibits a rich polymorphism, which was corroborated by AFM and SEM. In particular, it was found to form supramolecular fibrils when deposited on substrates. The morphology of the fibrils suggests that they are formed by several rows of fullerene-porphyrin complexes.


Assuntos
Fulerenos/química , Metaloporfirinas/química , Química Click , Reação de Cicloadição , Técnicas Eletroquímicas , Nanoestruturas/química , Polímeros/síntese química , Polímeros/química
17.
Nanoscale ; 15(11): 5510-5518, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36853236

RESUMO

Research on graphene based nanomaterials has flourished in the last decade due their unique properties and emerging socio-economic impact. In the context of their potential exploitation for biomedical applications, there is a growing need for the development of more efficient imaging techniques to track the fate of these materials. Herein we propose the first correlative imaging approach based on the combination of radioimaging and mass spectrometry imaging for the detection of Graphene Oxide (GO) labelled with carbon-14 in mice. In this study, 14C-graphene oxide nanoribbons were produced from the oxidative opening of 14C-carbon nanotubes, and were then intensively sonicated to provide nano-size 14C-GO flakes. After Intravenous administration in mice, 14C-GO distribution was quantified by radioimaging performed on tissue slices. On the same slices, MS-imaging provided a highly resolved distribution map of the nanomaterial based on the detection of specific radical anionic carbon clusters ranging from C2˙- to C9˙- with a base peak at m/z 72 (12C) and 74 (14C) under negative laser desorption ionization mass spectrometry (LDI-MS) conditions. This proof of concept approach synergizes the strength of each technique and could be advantageous in the pre-clinical development of future Graphene-based biomedical applications.


Assuntos
Grafite , Nanotubos de Carbono , Animais , Camundongos , Grafite/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Distribuição Tecidual , Radioisótopos de Carbono
18.
Nanoscale ; 15(43): 17621-17632, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37877415

RESUMO

Research on graphene-based nanomaterials has experienced exponential growth in the last few decades, driven by their unique properties and their future potential impact on our everyday life. With the increasing production and commercialization of these materials, there is significant interest in understanding their fate in vivo. Herein, we investigated the distribution of 14C-few-layer graphene (14C-FLG) flakes (lat. dim. ∼ 500 nm) in mice over a period of one year. Furthermore, we compared the effects of repeated low-dose and acute high-dose exposure by tracheal administration. The results showed that most of the radioactivity was found in the lungs in both cases, with longer elimination times in the case of acute high-dose administration. In order to gain deeper insights into the distribution pattern, we conducted ex vivo investigations using µ-autoradiography on tissue sections, revealing the heterogeneous distribution of the material following administration. For the first time, µ-autoradiography was used to conduct a comprehensive investigation into the distribution and potential presence of FLG within lung cells isolated from the exposed lungs. The presence of radioactivity in lung cells strongly suggests internalization of the 14C-FLG particles. Overall these results show the long-term accumulation of the material in the lungs over one year, regardless of the administration protocol, and the higher biopersistence of FLG in the case of an acute exposure. These findings highlight the importance of the exposure scenario in the context of intratracheal administration, which is of interest in the evaluation of the potential health risks of graphene-based nanomaterials.


Assuntos
Grafite , Nanoestruturas , Animais , Camundongos , Distribuição Tecidual , Pulmão/diagnóstico por imagem
19.
Nat Commun ; 14(1): 4728, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550308

RESUMO

Nanographene materials are promising building blocks for the growing field of low-dimensional materials for optics, electronics and biophotonics applications. In particular, bottom-up synthesized 0D graphene quantum dots show great potential as single quantum emitters. To fully exploit their exciting properties, the graphene quantum dots must be of high purity; the key parameter for efficient purification being the solubility of the starting materials. Here, we report the synthesis of a family of highly soluble and easily processable rod-shaped graphene quantum dots with fluorescence quantum yields up to 94%. This is uncommon for a red emission. The high solubility is directly related to the design of the structure, allowing for an accurate description of the photophysical properties of the graphene quantum dots both in solution and at the single molecule level. These photophysical properties were fully predicted by quantum-chemical calculations.

20.
Nanoscale ; 14(10): 3826-3833, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35194627

RESUMO

Graphene quantum dots, atomically precise nanopieces of graphene, are promising nano-objects with potential applications in various domains such as photovoltaics, quantum light emitters and bio-imaging. Despite their interesting prospects, precise reports on their photophysical properties remain scarce. Here, we report on a study of the photophysics of C96H24(C12H25) graphene quantum dots. A combination of optical studies down to the single molecule level with advanced molecular modelling demonstrates the importance of coupling to vibrations in the emission process. Optical fingerprints for H-like aggregates are identified. Our combined experimental-theoretical investigations provide a comprehensive description of the light absorption and emission properties of nanographenes, which not only represents an essential step towards precise control of sample production but also paves the way for new exciting physics focused on twisted graphenoids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA