Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Eur Heart J ; 44(44): 4696-4712, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37944136

RESUMO

BACKGROUND AND AIMS: Developing novel therapies to battle the global public health burden of heart failure remains challenging. This study investigates the underlying mechanisms and potential treatment for 4-hydroxynonenal (4-HNE) deleterious effects in heart failure. METHODS: Biochemical, functional, and histochemical measurements were applied to identify 4-HNE adducts in rat and human failing hearts. In vitro studies were performed to validate 4-HNE targets. RESULTS: 4-HNE, a reactive aldehyde by-product of mitochondrial dysfunction in heart failure, covalently inhibits Dicer, an RNase III endonuclease essential for microRNA (miRNA) biogenesis. 4-HNE inhibition of Dicer impairs miRNA processing. Mechanistically, 4-HNE binds to recombinant human Dicer through an intermolecular interaction that disrupts both activity and stability of Dicer in a concentration- and time-dependent manner. Dithiothreitol neutralization of 4-HNE or replacing 4-HNE-targeted residues in Dicer prevents 4-HNE inhibition of Dicer in vitro. Interestingly, end-stage human failing hearts from three different heart failure aetiologies display defective 4-HNE clearance, decreased Dicer activity, and miRNA biogenesis impairment. Notably, boosting 4-HNE clearance through pharmacological re-activation of mitochondrial aldehyde dehydrogenase 2 (ALDH2) using Alda-1 or its improved orally bioavailable derivative AD-9308 restores Dicer activity. ALDH2 is a major enzyme responsible for 4-HNE removal. Importantly, this response is accompanied by improved miRNA maturation and cardiac function/remodelling in a pre-clinical model of heart failure. CONCLUSIONS: 4-HNE inhibition of Dicer directly impairs miRNA biogenesis in heart failure. Strikingly, decreasing cardiac 4-HNE levels through pharmacological ALDH2 activation is sufficient to re-establish Dicer activity and miRNA biogenesis; thereby representing potential treatment for patients with heart failure.


Assuntos
Insuficiência Cardíaca , MicroRNAs , Humanos , Ratos , Animais , MicroRNAs/metabolismo , Ribonuclease III/genética , Ribonuclease III/metabolismo , Aldeídos/metabolismo , Aldeídos/farmacologia , Processamento de Proteína Pós-Traducional , Aldeído-Desidrogenase Mitocondrial/genética
2.
EMBO Rep ; 22(12): e52964, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34617666

RESUMO

While mitochondrial function is essential for life in all multicellular organisms, a mild impairment of mitochondrial function can extend longevity in model organisms. By understanding the molecular mechanisms involved, these pathways might be targeted to promote healthy aging. In studying two long-lived mitochondrial mutants in C. elegans, we found that disrupting subunits of the mitochondrial electron transport chain results in upregulation of genes involved in innate immunity, which is driven by the mitochondrial unfolded protein response (mitoUPR) but also dependent on the canonical p38-mediated innate immune signaling pathway. Both of these pathways are required for the increased resistance to bacterial pathogens and extended longevity of the long-lived mitochondrial mutants, as is the FOXO transcription factor DAF-16. This work demonstrates that both the p38-mediated innate immune signaling pathway and the mitoUPR act in concert on the same innate immunity genes to promote pathogen resistance and longevity and that input from the mitochondria can extend longevity by signaling through these pathways. This indicates that multiple evolutionarily conserved genetic pathways controlling innate immunity also function to modulate lifespan.


Assuntos
Proteínas de Caenorhabditis elegans , Longevidade , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Imunidade Inata/fisiologia , Longevidade/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Transdução de Sinais
3.
FASEB J ; 34(4): 5628-5641, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32112488

RESUMO

ß2 -adrenoceptor agonists improve autophagy and re-establish proteostasis in cardiac cells; therefore, suggesting autophagy as a downstream effector of ß2 -adrenoceptor signaling pathway. Here, we used the pharmacological and genetic tools to determine the autophagy effect of sustained ß2 -adrenoceptor activation in rodents with neurogenic myopathy, which display impaired skeletal muscle autophagic flux. Sustained ß2 -adrenoceptor activation using Formoterol (10 µg kg-1  day-1 ), starting at the onset of neurogenic myopathy, prevents disruption of autophagic flux in skeletal muscle 14 days after sciatic nerve constriction. These changes are followed by reduction of the cytotoxic protein levels and increased skeletal muscle cross-sectional area and contractility properties. Of interest, sustained administration of Formoterol at lower concentration (1 µg kg-1  day-1 ) induces similar improvements in skeletal muscle autophagic flux and contractility properties in neurogenic myopathy, without affecting the cross-sectional area. Sustained pharmacological inhibition of autophagy using Chloroquine (50 mg kg-1  day-1 ) abolishes the beneficial effects of ß2 -adrenoceptor activation on the skeletal muscle proteostasis and contractility properties in neurogenic myopathy. Further supporting an autophagy mechanism for ß2 -adrenoceptor activation, skeletal muscle-specific deletion of ATG7 blunts the beneficial effects of ß2 -adrenoceptor on skeletal muscle proteostasis and contractility properties in neurogenic myopathy in mice. These findings suggest autophagy as a critical downstream effector of ß2 -adrenoceptor signaling pathway in skeletal muscle.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Autofagia , Músculo Esquelético/patologia , Doenças Musculares/prevenção & controle , Proteostase , Receptores Adrenérgicos beta 2/metabolismo , Animais , Fumarato de Formoterol , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Contração Muscular , Músculo Esquelético/metabolismo , Doenças Musculares/etiologia , Doenças Musculares/metabolismo , Doenças Musculares/patologia , Ratos , Ratos Sprague-Dawley , Receptores Adrenérgicos beta 2/química , Transdução de Sinais
4.
FASEB J ; 33(11): 11857-11869, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31365836

RESUMO

The deleterious effects of statins on skeletal muscle are well known, but the mechanism associated with these effects remains unresolved. Statins are associated with mitochondrial damage, which may contribute to muscle myopathy. Here we demonstrate that simvastatin induces mitophagy in skeletal muscle cells and hypothesized that attenuating this process by silencing the mitophagy adapter p62/sequestosome-1 (SQSTM1) might mitigate myotoxicity. Surprisingly, silencing p62/SQSTM1 in differentiated C2C12 muscle cells exacerbated rather than attenuated myotoxicity. This inhibition of mitophagy in the face of statin challenge correlated with increased release of cytochrome c to the cytosol, activation of caspase-3, and lactate dehydrogenase (LDH) release. Correspondingly, targeted knockdown of Parkin, a canonical E3 ubiquitin ligase important for mitophagy, mirrored the effects of p62/SQSTM1 silencing. To corroborate these findings in vivo, we treated Parkin knockout mice with simvastatin for 2 wk. In line with our findings in vitro, these mitophagy-compromised mice displayed reduced spontaneous activity, loss of grip strength, and increased circulating levels of muscle damage marker LDH. Our findings demonstrate that mitophagy is an important mechanism to resist statin-induced skeletal muscle damage.-Ramesh, M., Campos, J. C., Lee, P., Song, Y., Hernandez, G., Sin, J., Tucker, K. C., Saadaeijahromi, H., Gurney, M., Ferreira, J. C. B., Andres, A. M. Mitophagy protects against statin-mediated skeletal muscle toxicity.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Mitofagia/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Proteína Sequestossoma-1/metabolismo , Sinvastatina/farmacologia , Animais , Caspase 3/metabolismo , Linhagem Celular , Citocromos c/metabolismo , L-Lactato Desidrogenase/metabolismo , Camundongos Knockout , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Mioblastos/citologia , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Interferência de RNA , Proteína Sequestossoma-1/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
6.
Pharmaceuticals (Basel) ; 15(3)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35337069

RESUMO

Myocardial infarction is the leading cause of cardiovascular mortality, with myocardial injury occurring during ischemia and subsequent reperfusion (IR). We previously showed that the inhibition of protein kinase C delta (δPKC) with a pan-inhibitor (δV1-1) mitigates myocardial injury and improves mitochondrial function in animal models of IR, and in humans with acute myocardial infarction, when treated at the time of opening of the occluded blood vessel, at reperfusion. Cardiac troponin I (cTnI), a key sarcomeric protein in cardiomyocyte contraction, is phosphorylated by δPKC during reperfusion. Here, we describe a rationally-designed, selective, high-affinity, eight amino acid peptide that inhibits cTnI's interaction with, and phosphorylation by, δPKC (ψTnI), and prevents tissue injury in a Langendorff model of myocardial infarction, ex vivo. Unexpectedly, we also found that this treatment attenuates IR-induced mitochondrial dysfunction. These data suggest that δPKC phosphorylation of cTnI is critical in IR injury, and that a cTnI/δPKC interaction inhibitor should be considered as a therapeutic target to reduce cardiac injury after myocardial infarction.

8.
Mol Aspects Med ; 71: 100836, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31866004

RESUMO

Disruption of mitochondrial function is a common feature of inherited mitochondrial diseases (mitochondriopathies) and many other infectious and non-infectious diseases including viral, bacterial and protozoan infections, inflammatory and chronic pain, neurodegeneration, diabetes, obesity and cardiovascular diseases. Mitochondria therefore become an attractive target for developing new therapies. In this review we describe critical mechanisms involved in the maintenance of mitochondrial functionality and discuss strategies used to identify and validate mitochondrial targets in different diseases. We also highlight the most recent preclinical and clinical findings using molecules targeting mitochondrial bioenergetics, morphology, number, content and detoxification systems in common pathologies.


Assuntos
Doenças Cardiovasculares/metabolismo , Mitocôndrias/metabolismo , Animais , Doenças Cardiovasculares/tratamento farmacológico , Metabolismo Energético/efeitos dos fármacos , Humanos , Mitocôndrias/efeitos dos fármacos , Terapia de Alvo Molecular , Estresse Oxidativo/efeitos dos fármacos
10.
Nat Commun ; 10(1): 329, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30659190

RESUMO

We previously demonstrated that beta II protein kinase C (ßIIPKC) activity is elevated in failing hearts and contributes to this pathology. Here we report that ßIIPKC accumulates on the mitochondrial outer membrane and phosphorylates mitofusin 1 (Mfn1) at serine 86. Mfn1 phosphorylation results in partial loss of its GTPase activity and in a buildup of fragmented and dysfunctional mitochondria in heart failure. ßIIPKC siRNA or a ßIIPKC inhibitor mitigates mitochondrial fragmentation and cell death. We confirm that Mfn1-ßIIPKC interaction alone is critical in inhibiting mitochondrial function and cardiac myocyte viability using SAMßA, a rationally-designed peptide that selectively antagonizes Mfn1-ßIIPKC association. SAMßA treatment protects cultured neonatal and adult cardiac myocytes, but not Mfn1 knockout cells, from stress-induced death. Importantly, SAMßA treatment re-establishes mitochondrial morphology and function and improves cardiac contractility in rats with heart failure, suggesting that SAMßA may be a potential treatment for patients with heart failure.


Assuntos
Insuficiência Cardíaca/tratamento farmacológico , Proteínas de Membrana/antagonistas & inibidores , Proteínas Mitocondriais/antagonistas & inibidores , Peptídeos/farmacologia , Proteína Quinase C beta/antagonistas & inibidores , Animais , GTP Fosfo-Hidrolases/metabolismo , Técnicas de Inativação de Genes , Insuficiência Cardíaca/metabolismo , Masculino , Membranas Mitocondriais/metabolismo , Contração Miocárdica , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Fosforilação , RNA Interferente Pequeno , Ratos Wistar
12.
Int J Cardiol ; 272: 194-201, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30173922

RESUMO

BACKGROUND: Disruption of endoplasmic reticulum (ER) homeostasis is a common feature of cardiac diseases. However, the signaling events involved in ER stress-induced cardiac dysfunction are still elusive. Here, we uncovered a mechanism by which disruption of ER homeostasis impairs cardiac contractility. METHODS/RESULTS: We found that ER stress is associated with activation of JNK and upregulation of BNIP3 in a post-myocardial infarction (MI) model of cardiac dysfunction. Of interest, 4-week treatment of MI rats with the chemical ER chaperone 4-phenylbutyrate (4PBA) prevented both activation of JNK and upregulation of BNIP3, and improved cardiac contractility. We showed that disruption of ER homeostasis by treating adult rat cardiomyocytes in culture with tunicamycin leads to contractile dysfunction through JNK signaling pathway. Upon ER stress JNK upregulates BNIP3 in a FOXO3a-dependent manner. Further supporting a BNIP3 mechanism for ER stress-induced deterioration of cardiac function, siRNA-mediated BNIP3 knockdown mitigated ER stress-induced cardiomyocyte dysfunction by reestablishing sarcoplasmic reticulum Ca2+ content. CONCLUSIONS: Collectively, our data identify JNK-dependent upregulation of BNIP3 as a critical process involved in ER stress-induced cardiomyocyte contractile dysfunction and highlight 4PBA as a potential intervention to counteract ER stress-mediated BNIP3 upregulation in failing hearts.


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas de Membrana/biossíntese , Proteínas Mitocondriais/biossíntese , Contração Miocárdica/fisiologia , Miócitos Cardíacos/metabolismo , Regulação para Cima/fisiologia , Animais , Células Cultivadas , Ratos
13.
Sci Rep ; 8(1): 11818, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30087400

RESUMO

Increased proteolytic activity has been widely associated with skeletal muscle atrophy. However, elevated proteolysis is also critical for the maintenance of cellular homeostasis by disposing cytotoxic proteins and non-functioning organelles. We recently demonstrated that exercise activates autophagy and re-establishes proteostasis in cardiac diseases. Here, we characterized the impact of exercise on skeletal muscle autophagy and proteostasis in a model of neurogenic myopathy induced by sciatic nerve constriction in rats. Neurogenic myopathy, characterized by progressive atrophy and impaired contractility, was paralleled by accumulation of autophagy-related markers and loss of acute responsiveness to both colchicine and chloroquine. These changes were correlated with elevated levels of damaged proteins, chaperones and pro-apoptotic markers compared to control animals. Sustained autophagy inhibition using chloroquine in rats (50 mg.kg-1.day-1) or muscle-specific deletion of Atg7 in mice was sufficient to impair muscle contractility in control but not in neurogenic myopathy, suggesting that dysfunctional autophagy is critical in skeletal muscle pathophysiology. Finally, 4 weeks of aerobic exercise training (moderate treadmill running, 5x/week, 1 h/day) prior to neurogenic myopathy improved skeletal muscle autophagic flux and proteostasis. These changes were followed by spared muscle mass and better contractility properties. Taken together, our findings suggest the potential value of exercise in maintaining skeletal muscle proteostasis and slowing down the progression of neurogenic myopathy.


Assuntos
Autofagia/fisiologia , Doenças Neuromusculares/fisiopatologia , Condicionamento Físico Animal/fisiologia , Proteostase/fisiologia , Animais , Antirreumáticos/farmacologia , Autofagia/genética , Cloroquina/farmacologia , Masculino , Camundongos Knockout , Camundongos Transgênicos , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/metabolismo , Atrofia Muscular/fisiopatologia , Doenças Neuromusculares/genética , Doenças Neuromusculares/metabolismo , Proteólise , Proteostase/genética , Ratos Sprague-Dawley
14.
Autophagy ; 13(8): 1304-1317, 2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-28598232

RESUMO

We previously reported that facilitating the clearance of damaged mitochondria through macroautophagy/autophagy protects against acute myocardial infarction. Here we characterize the impact of exercise, a safe strategy against cardiovascular disease, on cardiac autophagy and its contribution to mitochondrial quality control, bioenergetics and oxidative damage in a post-myocardial infarction-induced heart failure animal model. We found that failing hearts displayed reduced autophagic flux depicted by accumulation of autophagy-related markers and loss of responsiveness to chloroquine treatment at 4 and 12 wk after myocardial infarction. These changes were accompanied by accumulation of fragmented mitochondria with reduced O2 consumption, elevated H2O2 release and increased Ca2+-induced mitochondrial permeability transition pore opening. Of interest, disruption of autophagic flux was sufficient to decrease cardiac mitochondrial function in sham-treated animals and increase cardiomyocyte toxicity upon mitochondrial stress. Importantly, 8 wk of exercise training, starting 4 wk after myocardial infarction at a time when autophagy and mitochondrial oxidative capacity were already impaired, improved cardiac autophagic flux. These changes were followed by reduced mitochondrial number:size ratio, increased mitochondrial bioenergetics and better cardiac function. Moreover, exercise training increased cardiac mitochondrial number, size and oxidative capacity without affecting autophagic flux in sham-treated animals. Further supporting an autophagy mechanism for exercise-induced improvements of mitochondrial bioenergetics in heart failure, acute in vivo inhibition of autophagic flux was sufficient to mitigate the increased mitochondrial oxidative capacity triggered by exercise in failing hearts. Collectively, our findings uncover the potential contribution of exercise in restoring cardiac autophagy flux in heart failure, which is associated with better mitochondrial quality control, bioenergetics and cardiac function.


Assuntos
Autofagia , Insuficiência Cardíaca/patologia , Mitocôndrias/metabolismo , Animais , Autofagia/genética , Linhagem Celular , Sobrevivência Celular , Regulação para Baixo/genética , Masculino , Camundongos , Mitocôndrias/ultraestrutura , Dinâmica Mitocondrial , Condicionamento Físico Animal , Ratos Wistar
15.
Front Physiol ; 7: 479, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27818636

RESUMO

Disruption of mitochondrial homeostasis is a hallmark of cardiac diseases. Therefore, maintenance of mitochondrial integrity through different surveillance mechanisms is critical for cardiomyocyte survival. In this review, we discuss the most recent findings on the central role of mitochondrial quality control processes including regulation of mitochondrial redox balance, aldehyde metabolism, proteostasis, dynamics, and clearance in cardiac diseases, highlighting their potential as therapeutic targets.

17.
Int J Cardiol ; 179: 129-38, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25464432

RESUMO

BACKGROUND/OBJECTIVES: We previously demonstrated that reducing cardiac aldehydic load by aldehyde dehydrogenase 2 (ALDH2), a mitochondrial enzyme responsible for metabolizing the major lipid peroxidation product, protects against acute ischemia/reperfusion injury and chronic heart failure. However, time-dependent changes in ALDH2 profile, aldehydic load and mitochondrial bioenergetics during progression of post-myocardial infarction (post-MI) cardiomyopathy are unknown and should be established to determine the optimal time window for drug treatment. METHODS: Here we characterized cardiac ALDH2 activity and expression, lipid peroxidation, 4-hydroxy-2-nonenal (4-HNE) adduct formation, glutathione pool and mitochondrial energy metabolism and H2O2 release during the 4 weeks after permanent left anterior descending (LAD) coronary artery occlusion in rats. RESULTS: We observed a sustained disruption of cardiac mitochondrial function during the progression of post-MI cardiomyopathy, characterized by >50% reduced mitochondrial respiratory control ratios and up to 2 fold increase in H2O2 release. Mitochondrial dysfunction was accompanied by accumulation of cardiac and circulating lipid peroxides and 4-HNE protein adducts and down-regulation of electron transport chain complexes I and V. Moreover, increased aldehydic load was associated with a 90% reduction in cardiac ALDH2 activity and increased glutathione pool. Further supporting an ALDH2 mechanism, sustained Alda-1 treatment (starting 24h after permanent LAD occlusion surgery) prevented aldehydic overload, mitochondrial dysfunction and improved ventricular function in post-MI cardiomyopathy rats. CONCLUSION: Taken together, our findings demonstrate a disrupted mitochondrial metabolism along with an insufficient cardiac ALDH2-mediated aldehyde clearance during the progression of ventricular dysfunction, suggesting a potential therapeutic value of ALDH2 activators during the progression of post-myocardial infarction cardiomyopathy.


Assuntos
Aldeído Desidrogenase/metabolismo , Benzamidas/uso terapêutico , Benzodioxóis/uso terapêutico , Cardiomiopatias/metabolismo , Progressão da Doença , Proteínas Mitocondriais/metabolismo , Infarto do Miocárdio/metabolismo , Aldeído-Desidrogenase Mitocondrial , Aldeídos/metabolismo , Animais , Benzamidas/farmacologia , Benzodioxóis/farmacologia , Cardiomiopatias/tratamento farmacológico , Masculino , Infarto do Miocárdio/tratamento farmacológico , Ratos , Ratos Wistar
19.
Cardiovasc Res ; 103(4): 498-508, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24817685

RESUMO

AIMS: We previously demonstrated that pharmacological activation of mitochondrial aldehyde dehydrogenase 2 (ALDH2) protects the heart against acute ischaemia/reperfusion injury. Here, we determined the benefits of chronic activation of ALDH2 on the progression of heart failure (HF) using a post-myocardial infarction model. METHODS AND RESULTS: We showed that a 6-week treatment of myocardial infarction-induced HF rats with a selective ALDH2 activator (Alda-1), starting 4 weeks after myocardial infarction at a time when ventricular remodelling and cardiac dysfunction were present, improved cardiomyocyte shortening, cardiac function, left ventricular compliance and diastolic function under basal conditions, and after isoproterenol stimulation. Importantly, sustained Alda-1 treatment showed no toxicity and promoted a cardiac anti-remodelling effect by suppressing myocardial hypertrophy and fibrosis. Moreover, accumulation of 4-hydroxynonenal (4-HNE)-protein adducts and protein carbonyls seen in HF was not observed in Alda-1-treated rats, suggesting that increasing the activity of ALDH2 contributes to the reduction of aldehydic load in failing hearts. ALDH2 activation was associated with improved mitochondrial function, including elevated mitochondrial respiratory control ratios and reduced H2O2 release. Importantly, selective ALDH2 activation decreased mitochondrial Ca(2+)-induced permeability transition and cytochrome c release in failing hearts. Further supporting a mitochondrial mechanism for ALDH2, Alda-1 treatment preserved mitochondrial function upon in vitro aldehydic load. CONCLUSIONS: Selective activation of mitochondrial ALDH2 is sufficient to improve the HF outcome by reducing the toxic effects of aldehydic overload on mitochondrial bioenergetics and reactive oxygen species generation, suggesting that ALDH2 activators, such as Alda-1, have a potential therapeutic value for treating HF patients.


Assuntos
Aldeído Desidrogenase/metabolismo , Insuficiência Cardíaca/enzimologia , Mitocôndrias/enzimologia , Proteínas Mitocondriais/metabolismo , Remodelação Ventricular/fisiologia , Aldeído-Desidrogenase Mitocondrial , Animais , Insuficiência Cardíaca/fisiopatologia , Masculino , Contração Miocárdica/fisiologia , Miócitos Cardíacos/enzimologia , Ratos Wistar , Função Ventricular/fisiologia
20.
Food Chem Toxicol ; 62: 107-19, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23978413

RESUMO

Reactive oxygen and nitrogen species regulate a wide array of signaling pathways that governs cardiovascular physiology. However, oxidant stress resulting from disrupted redox signaling has an adverse impact on the pathogenesis and progression of cardiovascular diseases. In this review, we address how redox signaling and oxidant stress affect the pathophysiology of cardiovascular diseases such as ischemia-reperfusion injury, hypertension and heart failure. We also summarize the benefits of exercise training in tackling the hyperactivation of cellular oxidases and mitochondrial dysfunction seen in cardiovascular diseases.


Assuntos
Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/fisiopatologia , Exercício Físico , Estresse Oxidativo , Transdução de Sinais , Antioxidantes/metabolismo , Exercício Físico/fisiologia , Humanos , Mitocôndrias/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA