Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Mol Cell ; 70(1): 34-47.e4, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29551515

RESUMO

UV-induced photoproducts are responsible for the pathological effects of sunlight. Mutations in nucleotide excision repair (NER) cause severe pathologies characterized by sunlight sensitivity, coupled to elevated predisposition to cancer and/or neurological dysfunctions. We have previously shown that in UV-irradiated non-cycling cells, only a particular subset of lesions activates the DNA damage response (DDR), and this requires NER and EXO1 activities. To define the molecular mechanism acting at these lesions, we demonstrate that Y family TLS polymerases are recruited at NER- and EXO1-positive lesion sites in non-S phase cells. The coordinated action of EXO1 and Y family TLS polymerases promotes checkpoint activation, leads to lesion repair, and is crucial to prevent cytotoxic double-strand break (DSB) formation.


Assuntos
Pontos de Checagem do Ciclo Celular/efeitos da radiação , Quebras de DNA de Cadeia Dupla , Enzimas Reparadoras do DNA/metabolismo , Reparo do DNA/efeitos da radiação , DNA Polimerase Dirigida por DNA/metabolismo , Exodesoxirribonucleases/metabolismo , Raios Ultravioleta/efeitos adversos , Morte Celular/efeitos da radiação , Linhagem Celular , Enzimas Reparadoras do DNA/genética , DNA Polimerase Dirigida por DNA/genética , Exodesoxirribonucleases/genética , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Transporte Proteico , DNA Polimerase iota
3.
Neurobiol Dis ; 146: 105140, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33065279

RESUMO

RUES2 cell lines represent the first collection of isogenic human embryonic stem cells (hESCs) carrying different pathological CAG lengths in the HTT gene. However, their neuronal differentiation potential has yet to be thoroughly evaluated. Here, we report that RUES2 during ventral telencephalic differentiation is biased towards medial ganglionic eminence (MGE). We also show that HD-RUES2 cells exhibit an altered MGE transcriptional signature in addition to recapitulating known HD phenotypes, with reduced expression of the neurodevelopmental regulators NEUROD1 and BDNF and increased cleavage of synaptically enriched N-cadherin. Finally, we identified the transcription factor SP1 as a common potential detrimental co-partner of muHTT by de novo motif discovery analysis on the LGE, MGE, and cortical genes differentially expressed in HD human pluripotent stem cells in our and additional datasets. Taken together, these observations suggest a broad deleterious effect of muHTT in the early phases of neuronal development that may unfold through its altered interaction with SP1.


Assuntos
Biomarcadores Tumorais/metabolismo , Diferenciação Celular/fisiologia , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Pluripotentes/citologia , Receptores Imunológicos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células-Tronco Embrionárias Humanas/patologia , Humanos , Doença de Huntington/genética , Doença de Huntington/metabolismo , Neurogênese/fisiologia , Neurônios/metabolismo
4.
Stem Cell Res Ther ; 14(1): 189, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37507794

RESUMO

BACKGROUND: Huntington's disease (HD) is a motor and cognitive neurodegenerative disorder due to prominent loss of striatal medium spiny neurons (MSNs). Cell replacement using human embryonic stem cells (hESCs) derivatives may offer new therapeutic opportunities to replace degenerated neurons and repair damaged circuits. METHODS: With the aim to develop effective cell replacement for HD, we assessed the long-term therapeutic value of hESC-derived striatal progenitors by grafting the cells into the striatum of a preclinical model of HD [i.e., adult immunodeficient rats in which the striatum was lesioned by monolateral injection of quinolinic acid (QA)]. We examined the survival, maturation, self-organization and integration of the graft as well as its impact on lesion-dependent motor alterations up to 6 months post-graft. Moreover, we tested whether exposing a cohort of QA-lesioned animals to environmental enrichment (EE) could improve graft integration and function. RESULTS: Human striatal progenitors survived up to 6 months after transplantation and showed morphological and neurochemical features typical of human MSNs. Donor-derived interneurons were also detected. Grafts wired in both local and long-range striatal circuits, formed domains suggestive of distinct ganglionic eminence territories and displayed emerging striosome features. Moreover, over time grafts improved complex motor performances affected by QA. EE selectively increased cell differentiation into MSN phenotype and promoted host-to-graft connectivity. However, when combined to the graft, the EE paradigm used in this study was insufficient to produce an additive effect on task execution. CONCLUSIONS: The data support the long-term therapeutic potential of ESC-derived human striatal progenitor grafts for the replacement of degenerated striatal neurons in HD and suggest that EE can effectively accelerate the maturation and promote the integration of human striatal cells.


Assuntos
Transplante de Tecido Encefálico , Células-Tronco Embrionárias Humanas , Doença de Huntington , Ratos , Animais , Humanos , Doença de Huntington/terapia , Corpo Estriado/fisiologia , Neurônios , Modelos Animais de Doenças
5.
Cell Rep Methods ; 2(12): 100367, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36590694

RESUMO

Stem cell engineering of striatal medium spiny neurons (MSNs) is a promising strategy to understand diseases affecting the striatum and for cell-replacement therapies in different neurological diseases. Protocols to generate cells from human pluripotent stem cells (PSCs) are scarce and how well they recapitulate the endogenous fetal cells remains poorly understood. We have developed a protocol that modulates cell seeding density and exposure to specific morphogens that generates authentic and functional D1- and D2-MSNs with a high degree of reproducibility in 25 days of differentiation. Single-cell RNA sequencing (scRNA-seq) shows that our cells can mimic the cell-fate acquisition steps observed in vivo in terms of cell type composition, gene expression, and signaling pathways. Finally, by modulating the midkine pathway we show that we can increase the yield of MSNs. We expect that this protocol will help decode pathogenesis factors in striatal diseases and eventually facilitate cell-replacement therapies for Huntington's disease (HD).


Assuntos
Neurônios Espinhosos Médios , Células-Tronco Pluripotentes , Humanos , Reprodutibilidade dos Testes , Neurogênese , Corpo Estriado , Células-Tronco Pluripotentes/metabolismo
6.
Stem Cell Res ; 49: 102016, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33039807

RESUMO

GSX2 is a homeobox transcription factor (TF) controlling the specification of the ventral lateral ganglionic eminence and its major derivative, the corpus striatum. Medium spiny neurons (MSNs) represent the largest cell component of the striatum and they are primarily affected in Huntington disease (HD). Here, we used CRISPR technology to generate a pluripotent GSX2-reporter human embryonic stem cell (hESC) line that can be leveraged to monitor striatal differentiation in real-time and to enrich for MSN-committed progenitors.


Assuntos
Células-Tronco Embrionárias Humanas , Diferenciação Celular , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Corpo Estriado , Células-Tronco Embrionárias , Humanos , Neurônios
7.
Stem Cell Reports ; 14(5): 876-891, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32302555

RESUMO

Huntington disease (HD) is an inherited late-onset neurological disorder characterized by progressive neuronal loss and disruption of cortical and basal ganglia circuits. Cell replacement using human embryonic stem cells may offer the opportunity to repair the damaged circuits and significantly ameliorate disease conditions. Here, we showed that in-vitro-differentiated human striatal progenitors undergo maturation and integrate into host circuits upon intra-striatal transplantation in a rat model of HD. By combining graft-specific immunohistochemistry, rabies virus-mediated synaptic tracing, and ex vivo electrophysiology, we showed that grafts can extend projections to the appropriate target structures, including the globus pallidus, the subthalamic nucleus, and the substantia nigra, and receive synaptic contact from both host and graft cells with 6.6 ± 1.6 inputs cell per transplanted neuron. We have also shown that transplants elicited a significant improvement in sensory-motor tasks up to 2 months post-transplant further supporting the therapeutic potential of this approach.


Assuntos
Corpo Estriado/citologia , Células-Tronco Embrionárias Humanas/transplante , Doença de Huntington/terapia , Células-Tronco Neurais/transplante , Transplante de Células-Tronco/métodos , Animais , Células Cultivadas , Corpo Estriado/fisiologia , Células-Tronco Embrionárias Humanas/citologia , Humanos , Locomoção , Masculino , Células-Tronco Neurais/citologia , Neurogênese , Ratos , Regeneração , Sensação , Substância Negra/citologia , Substância Negra/fisiologia , Núcleo Subtalâmico/citologia , Núcleo Subtalâmico/fisiologia , Sinapses/metabolismo , Sinapses/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA