Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(2)2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33419187

RESUMO

The need to measure body temperature contactless and quickly during the COVID-19 pandemic emergency has led to the widespread use of infrared thermometers, thermal imaging cameras and thermal scanners as an alternative to the traditional contact clinical thermometers. However, limits and issues of noncontact temperature measurement devices are not well known and technical-scientific literature itself sometimes provides conflicting reference values on the body and skin temperature of healthy subjects. To limit the risk of contagion, national authorities have set the obligation to measure body temperature of workers at the entrance to the workplace. In this paper, the authors analyze noncontact body temperature measurement issues from both clinical and metrological points of view with the aim to (i) improve body temperature measurements accuracy; (ii) estimate the uncertainty of body temperature measurement on the field; (iii) propose a screening decision rule for the prevention of the spread of COVID-19. The approach adopted in this paper takes into account both the traditional instrumental uncertainty sources and clinical-medical ones related to the subjectivity of the measurand. A proper screening protocol for body temperature measurement considering the role of uncertainty is essential to correctly choose the threshold temperature value and measurement method to access critical places during COVID-19 pandemic emergency.


Assuntos
Temperatura Corporal , COVID-19/transmissão , SARS-CoV-2/isolamento & purificação , Incerteza , COVID-19/fisiopatologia , COVID-19/virologia , Humanos , Termografia/instrumentação
2.
Sci Total Environ ; 827: 154288, 2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35248635

RESUMO

Pollutant emissions from residential heating systems represent a main concern in terms of outdoor air quality. Differently from other pollutants, sub-micron particle emission from heating systems has not yet been exhaustively characterized by the scientific literature, with limited data available, in particular, for gas-fueled boilers. In the present paper, an experimental campaign to measure the sub-micron particle number concentrations and distributions at the stack of different automatically-fed small-scale heating systems (conventional and condensing boilers fueled by natural gas and liquid petroleum gas, and pellet stoves) was performed. Based on the measured concentrations, corresponding emission rates and emission factors were also estimated. The results of the experimental campaign revealed that the highest concentrations were measured for pellet stoves (median value >107 part. m-3), whereas conventional (about 1 × 106 part. m-3) and condensing boilers (<106 part. m-3) presented much lower concentrations. No effect of the fuel (natural gas, liquid petroleum gas) on the total concentration measured at the stack of boilers was recognized, whereas a smaller distribution mode (at 10 nm) was measured for gas-fired boilers. Because of the particle concentration values, the highest particle emission rates and factors were the pellet stove ones (median values of 2.1 × 1015 part. h-1 and 8.4 × 1013 part. kWh-1, respectively), whereas emission rates for conventional and condensing boilers were about 5 × 1013 part. h-1 and 2 × 1013 part. h-1, respectively. The estimated emission factors were also adopted to perform a simplified evaluation of the relative contributions of the investigated automatically-fed small-scale heating systems in terms of particle number on a national scale (Italy): we obtained that the pellet stove contribution is the main one as it accounts for 87% of total emissions of particle number for heating purpose.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Ambientais , Petróleo , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Calefação , Gás Natural , Material Particulado/análise
3.
Environ Pollut ; 269: 116229, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33321310

RESUMO

In the present study, the daily dose in terms of particle surface area received by citizens living in different low- and middle-income countries, characterized by different lifestyles, habits, and climates, was evaluated. The level of exposure to submicron particles and the dose received by the populations of Accra (Ghana), Cairo (Egypt), Florianopolis (Brazil), and Nur-Sultan (Kazakhstan) were analyzed. A direct exposure assessment approach was adopted to measure the submicron particle concentration levels of volunteers at a personal scale during their daily activities. Non-smoking adult volunteers performing non-industrial jobs were considered. Exposure data were combined with time-activity pattern data (characteristic of each population) and the inhalation rates to estimate the daily dose in terms of particle surface area. The received dose of the populations under investigation varied from 450 mm2 (Florianopolis, Brazil) to 1300 mm2 (Cairo, Egypt). This work highlights the different contributions of the microenvironments to the daily dose with respect to high-income western populations. It was evident that the contribution of the Cooking & Eating microenvironment to the total exposure (which was previously proven to be one of the main exposure routes for western populations) was only 8%-14% for low- and middle-income populations. In contrast, significant contributions were estimated for Outdoor day and Transport microenvironments (up to 20% for Cairo, Egypt) and the Sleeping & Resting microenvironment (up to 28% for Accra, Ghana), highlighting the effects of different site-specific lifestyles (e.g. time-activity patterns), habits, socioeconomic conditions, climates, and outdoor air quality.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Adulto , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Brasil , Países em Desenvolvimento , Egito , Monitoramento Ambiental , Gana , Humanos , Cazaquistão , Tamanho da Partícula , Material Particulado/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA