Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Bioinformatics ; 38(11): 3099-3105, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35438129

RESUMO

MOTIVATION: High parameter histological techniques have allowed for the identification of a variety of distinct cell types within an image, providing a comprehensive overview of the tissue environment. This allows the complex cellular architecture and environment of diseased tissue to be explored. While spatial analysis techniques have revealed how cell-cell interactions are important within the disease pathology, there remains a gap in exploring changes in these interactions within the disease process. Specifically, there are currently few established methods for performing inference on cell-type co-localization changes across images, hindering an understanding of how cellular environments change with a disease pathology. RESULTS: We have developed the spicyR R package to perform inference on changes in the spatial co-localization of types across groups of images. Application to simulated data demonstrates a high sensitivity and specificity. We the utility of spicyR by applying it to a type 1 diabetes imaging mass cytometry dataset, revealing changes in cellular associations that were relevant to the disease progression. Ultimately, spicyR allows changes in cellular environments to be explored under different pathologies or disease states. AVAILABILITY AND IMPLEMENTATION: R package is freely available at http://bioconductor.org/packages/release/bioc/html/spicyR.html and shiny app implementation at http://shiny.maths.usyd.edu.au/spicyR/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Software , Análise Espacial
2.
Cytometry A ; 103(7): 593-599, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36879360

RESUMO

Highly multiplexed in situ imaging cytometry assays have made it possible to study the spatial organization of numerous cell types simultaneously. We have addressed the challenge of quantifying complex multi-cellular relationships by proposing a statistical method which clusters local indicators of spatial association. Our approach successfully identifies distinct tissue architectures in datasets generated from three state-of-the-art high-parameter assays demonstrating its value in summarizing the information-rich data generated from these technologies.


Assuntos
Citometria por Imagem , Análise Espacial
3.
Bioinformatics ; 37(4): 559-567, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32931552

RESUMO

MOTIVATION: Autofluorescence is a long-standing problem that has hindered the analysis of images of tissues acquired by fluorescence microscopy. Current approaches to mitigate autofluorescence in tissue are lab-based and involve either chemical treatment of sections or specialized instrumentation and software to 'unmix' autofluorescent signals. Importantly, these approaches are pre-emptive and there are currently no methods to deal with autofluorescence in acquired fluorescence microscopy images. RESULTS: To address this, we developed Autofluorescence Identifier (AFid). AFid identifies autofluorescent pixels as discrete objects in multi-channel images post-acquisition. These objects can then be tagged for exclusion from downstream analysis. We validated AFid using images of FFPE human colorectal tissue stained for common immune markers. Further, we demonstrate its utility for image analysis where its implementation allows the accurate measurement of HIV-Dendritic cell interactions in a colorectal explant model of HIV transmission. Therefore, AFid represents a major leap forward in the extraction of useful data from images plagued by autofluorescence by offering an approach that is easily incorporated into existing workflows and that can be used with various samples, staining panels and image acquisition methods. We have implemented AFid in ImageJ, Matlab and R to accommodate the diverse image analysis community. AVAILABILITY AND IMPLEMENTATION: AFid software is available at https://ellispatrick.github.io/AFid. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Processamento de Imagem Assistida por Computador , Software , Técnicas Histológicas , Humanos , Microscopia de Fluorescência , Fluxo de Trabalho
4.
Front Immunol ; 10: 2657, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31798587

RESUMO

High parameter imaging is an important tool in the life sciences for both discovery and healthcare applications. Imaging Mass Cytometry (IMC) and Multiplexed Ion Beam Imaging (MIBI) are two relatively recent technologies which enable clinical samples to be simultaneously analyzed for up to 40 parameters at subcellular resolution. Importantly, these "Mass Cytometry Imaging" (MCI) modalities are being rapidly adopted for studies of the immune system in both health and disease. In this review we discuss, first, the various applications of MCI to date. Second, due to the inherent challenge of analyzing high parameter spatial data, we discuss the various approaches that have been employed for the processing and analysis of data from MCI experiments.


Assuntos
Citometria de Fluxo/métodos , Citometria por Imagem/métodos , Análise de Dados , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA