Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Biochem J ; 478(11): 2145-2161, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34032265

RESUMO

Recent advances in quantitative proteomics show that WD40 proteins play a pivotal role in numerous cellular networks. Yet, they have been fairly unexplored and their physical associations with other proteins are ambiguous. A quantitative understanding of these interactions has wide-ranging significance. WD40 repeat protein 5 (WDR5) interacts with all members of human SET1/MLL methyltransferases, which regulate methylation of the histone 3 lysine 4 (H3K4). Here, using real-time binding measurements in a high-throughput setting, we identified the kinetic fingerprint of transient associations between WDR5 and 14-residue WDR5 interaction (Win) motif peptides of each SET1 protein (SET1Win). Our results reveal that the high-affinity WDR5-SET1Win interactions feature slow association kinetics. This finding is likely due to the requirement of SET1Win to insert into the narrow WDR5 cavity, also named the Win binding site. Furthermore, our explorations indicate fairly slow dissociation kinetics. This conclusion is in accordance with the primary role of WDR5 in maintaining the functional integrity of a large multisubunit complex, which regulates the histone methylation. Because the Win binding site is considered a key therapeutic target, the immediate outcomes of this study could form the basis for accelerated developments in medical biotechnology.


Assuntos
Histona-Lisina N-Metiltransferase/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fragmentos de Peptídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Motivos de Aminoácidos , Sítios de Ligação , Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Cinética , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Ligação Proteica , Conformação Proteica
2.
Sci Rep ; 12(1): 18487, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36323913

RESUMO

Using exome sequencing for biomarker discovery and precision medicine requires connecting nucleotide-level variation with functional changes in encoded proteins. However, for functionally annotating the thousands of cancer-associated missense mutations, or variants of uncertain significance (VUS), purifying variant proteins for biochemical and functional analysis is cost-prohibitive and inefficient. We describe parallel functional annotation (PFA) of large numbers of VUS using small cultures and crude extracts in 96-well plates. Using members of a histone methyltransferase family, we demonstrate high-throughput structural and functional annotation of cancer-associated mutations. By combining functional annotation of paralogs, we discovered two phylogenetic and clustering parameters that improve the accuracy of sequence-based functional predictions to over 90%. Our results demonstrate the value of PFA for defining oncogenic/tumor suppressor functions of histone methyltransferases as well as enhancing the accuracy of sequence-based algorithms in predicting the effects of cancer-associated mutations.


Assuntos
Mutação de Sentido Incorreto , Neoplasias , Humanos , Filogenia , Histona Metiltransferases/genética , Neoplasias/genética , Algoritmos
3.
Front Mol Biosci ; 9: 1043713, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36419932

RESUMO

Literature has well-established the importance of 3-O-sulfation of neuronal cell surface glycan heparan sulfate (HS) to its interaction with herpes simplex virus type 1 glycoprotein D (gD). Previous investigations of gD to its viral receptors HVEM and nectin-1 also highlighted the conformational dynamics of gD's N- and C-termini, necessary for viral membrane fusion. However, little is known on the structural interactions of gD with HS. Here, we present our findings on this interface from both the glycan and the protein perspective. We used C-terminal and N-terminal gD variants to probe the role of their respective regions in gD/HS binding. The N-terminal truncation mutants (with Δ1-22) demonstrate equivalent or stronger binding to heparin than their intact glycoproteins, indicating that the first 22 amino acids are disposable for heparin binding. Characterization of the conformational differences between C-terminal truncated mutants by sedimentation velocity analytical ultracentrifugation distinguished between the "open" and "closed" conformations of the glycoprotein D, highlighting the region's modulation of receptor binding. From the glycan perspective, we investigated gD interacting with heparin, heparan sulfate, and other de-sulfated and chemically defined oligosaccharides using surface plasmon resonance and glycan microarray. The results show a strong preference of gD for 6-O-sulfate, with 2-O-sulfation becoming more important in the presence of 6-O-S. Additionally, 3-O-sulfation shifted the chain length preference of gD from longer chain to mid-chain length, reaffirming the sulfation site's importance to the gD/HS interface. Our results shed new light on the molecular details of one of seven known protein-glycan interactions with 3-O-sulfated heparan sulfate.

4.
Commun Biol ; 4(1): 398, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33767358

RESUMO

Accurate gene transcription in eukaryotes depends on isomerization of serine-proline bonds within the carboxy-terminal domain (CTD) of RNA polymerase II. Isomerization is part of the "CTD code" that regulates recruitment of proteins required for transcription and co-transcriptional RNA processing. Saccharomyces cerevisiae Ess1 and its human ortholog, Pin1, are prolyl isomerases that engage the long heptad repeat (YSPTSPS)26 of the CTD by an unknown mechanism. Here, we used an integrative structural approach to decipher Ess1 interactions with the CTD. Ess1 has a rigid linker between its WW and catalytic domains that enforces a distance constraint for bivalent interaction with the ends of long CTD substrates (≥4-5 heptad repeats). Our binding results suggest that the Ess1 WW domain anchors the proximal end of the CTD substrate during isomerization, and that linker divergence may underlie evolution of substrate specificity.


Assuntos
Peptidilprolil Isomerase de Interação com NIMA/genética , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Isomerismo , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Nat Commun ; 12(1): 986, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33579943

RESUMO

Epigallocatechin gallate (EGCG) from green tea can induce apoptosis in cancerous cells, but the underlying molecular mechanisms remain poorly understood. Using SPR and NMR, here we report a direct, µM interaction between EGCG and the tumor suppressor p53 (KD = 1.6 ± 1.4 µM), with the disordered N-terminal domain (NTD) identified as the major binding site (KD = 4 ± 2 µM). Large scale atomistic simulations (>100 µs), SAXS and AUC demonstrate that EGCG-NTD interaction is dynamic and EGCG causes the emergence of a subpopulation of compact bound conformations. The EGCG-p53 interaction disrupts p53 interaction with its regulatory E3 ligase MDM2 and inhibits ubiquitination of p53 by MDM2 in an in vitro ubiquitination assay, likely stabilizing p53 for anti-tumor activity. Our work provides insights into the mechanisms for EGCG's anticancer activity and identifies p53 NTD as a target for cancer drug discovery through dynamic interactions with small molecules.


Assuntos
Apoptose/efeitos dos fármacos , Catequina/análogos & derivados , Catequina/farmacologia , Proteínas Proto-Oncogênicas c-mdm2/química , Proteína Supressora de Tumor p53/química , Sítios de Ligação , Linhagem Celular Tumoral , Epitopos , Humanos , Ligação Proteica , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Espalhamento a Baixo Ângulo , Chá , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Difração de Raios X
6.
Structure ; 27(6): 937-951.e5, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-30982635

RESUMO

Proteasomal shuttle factor UBQLN2 is recruited to stress granules and undergoes liquid-liquid phase separation (LLPS) into protein-containing droplets. Mutations to UBQLN2 have recently been shown to cause dominant X-linked inheritance of amyotrophic lateral sclerosis (ALS) and ALS/dementia. Interestingly, most of these UBQLN2 mutations reside in its proline-rich (Pxx) region, an important modulator of LLPS. Here, we demonstrated that ALS-linked Pxx mutations differentially affect UBQLN2 LLPS, depending on both amino acid substitution and sequence position. Using size-exclusion chromatography, analytical ultracentrifugation, microscopy, and NMR spectroscopy, we determined that those Pxx mutants that enhanced UBQLN2 oligomerization decreased saturation concentrations needed for LLPS and promoted solid-like and viscoelastic morphological changes to UBQLN2 liquid assemblies. Ubiquitin disassembled all LLPS-induced mutant UBQLN2 aggregates. We postulate that the changes in physical properties caused by ALS-linked Pxx mutations modify UBQLN2 behavior in vivo, possibly contributing to aberrant stress granule morphology and dynamics, leading to formation of inclusions, pathological characteristics of ALS.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Aminoácidos/química , Esclerose Lateral Amiotrófica/genética , Proteínas Relacionadas à Autofagia/química , Mutação , Transição de Fase , Multimerização Proteica , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Aminoácidos/genética , Aminoácidos/metabolismo , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Humanos , Agregados Proteicos , Agregação Patológica de Proteínas , Estresse Fisiológico/genética , Ubiquitinas/genética , Ubiquitinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA