Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Dev Biol ; 496: 1-14, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36696714

RESUMO

HES3 is a basic helix-loop-helix transcription factor that regulates neural stem cell renewal during development. HES3 overexpression is predictive of reduced overall survival in patients with fusion-positive rhabdomyosarcoma, a pediatric cancer that resembles immature and undifferentiated skeletal muscle. However, the mechanisms of HES3 cooperation in fusion-positive rhabdomyosarcoma are unclear and are likely related to her3/HES3's role in neurogenesis. To investigate HES3's function during development, we generated a zebrafish CRISPR/Cas9 null mutation of her3, the zebrafish ortholog of HES3. Loss of her3 is not embryonic lethal and adults exhibit expected Mendelian ratios. Embryonic her3 zebrafish mutants exhibit dysregulated neurog1 expression, a her3 target gene, and the mutant her3 fails to bind the neurog1 promoter sequence. Further, her3 mutants are significantly smaller than wildtype and a subset present with lens defects as adults. Transcriptomic analysis of her3 mutant embryos indicates that genes involved in organ development, such as pctp and grinab, are significantly downregulated. Further, differentially expressed genes in her3 null mutant embryos are enriched for Hox and Sox10 motifs. Several cancer-related gene pathways are impacted, including the inhibition of matrix metalloproteinases. Altogether, this new model is a powerful system to study her3/HES3-mediated neural development and its misappropriation in cancer contexts.


Assuntos
Rabdomiossarcoma , Peixe-Zebra , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Sistema Nervoso/metabolismo , Neurogênese , Rabdomiossarcoma/genética , Proteínas de Peixe-Zebra/genética
2.
BMC Biol ; 21(1): 98, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37106386

RESUMO

BACKGROUND: Tumors are complex tissues containing collections of phenotypically diverse malignant and nonmalignant cells. We know little of the mechanisms that govern heterogeneity of tumor cells nor of the role heterogeneity plays in overcoming stresses, such as adaptation to different microenvironments. Osteosarcoma is an ideal model for studying these mechanisms-it exhibits widespread inter- and intra-tumoral heterogeneity, predictable patterns of metastasis, and a lack of clear targetable driver mutations. Understanding the processes that facilitate adaptation to primary and metastatic microenvironments could inform the development of therapeutic targeting strategies. RESULTS: We investigated single-cell RNA-sequencing profiles of 47,977 cells obtained from cell line and patient-derived xenograft models as cells adapted to growth within primary bone and metastatic lung environments. Tumor cells maintained phenotypic heterogeneity as they responded to the selective pressures imposed during bone and lung colonization. Heterogenous subsets of cells defined by distinct transcriptional profiles were maintained within bone- and lung-colonizing tumors, despite high-level selection. One prominent heterogenous feature involving glucose metabolism was clearly validated using immunofluorescence staining. Finally, using concurrent lineage tracing and single-cell transcriptomics, we found that lung colonization enriches for multiple clones with distinct transcriptional profiles that are preserved across cellular generations. CONCLUSIONS: Response to environmental stressors occurs through complex and dynamic phenotypic adaptations. Heterogeneity is maintained, even in conditions that enforce clonal selection. These findings likely reflect the influences of developmental processes promoting diversification of tumor cell subpopulations, which are retained, even in the face of selective pressures.


Assuntos
Neoplasias Ósseas , Neoplasias Pulmonares , Osteossarcoma , Humanos , Osteossarcoma/genética , Osteossarcoma/tratamento farmacológico , Osteossarcoma/patologia , Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Perfilação da Expressão Gênica , Neoplasias Ósseas/genética , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/patologia , Microambiente Tumoral/genética
3.
PLoS Biol ; 18(5): e3000711, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32365102

RESUMO

Plasmodium vivax and P. falciparum, the parasites responsible for most human malaria worldwide, exhibit striking biological differences, which have important clinical consequences. Unfortunately, P. vivax, unlike P. falciparum, cannot be cultivated continuously in vitro, which limits our understanding of its biology and, consequently, our ability to effectively control vivax malaria. Here, we describe single-cell gene expression profiles of 9,215 P. vivax parasites from bloodstream infections of Aotus and Saimiri monkeys. Our results show that transcription of most P. vivax genes occurs during short periods of the intraerythrocytic cycle and that this pattern of gene expression is conserved in other Plasmodium species. However, we also identify a strikingly high proportion of species-specific transcripts in late schizonts, possibly associated with the specificity of erythrocyte invasion. Our findings provide new and robust markers of blood-stage parasites, including some that are specific to the elusive P. vivax male gametocytes, and will be useful for analyzing gene expression data from laboratory and field samples.


Assuntos
Plasmodium vivax/metabolismo , Transcriptoma , Animais , Aotidae , Cloroquina , Feminino , Expressão Gênica , Masculino , Família Multigênica , Plasmodium vivax/crescimento & desenvolvimento , Saimiri , Esquizontes/metabolismo , Análise de Sequência de RNA , Análise de Célula Única , Especificidade da Espécie
4.
J Infect Dis ; 219(2): 315-322, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30102351

RESUMO

Background: Plasmodium vivax resistance to chloroquine (CQ) has been reported worldwide, although the World Health Organization clinical drug efficacy studies protocol does not permit classification of patient outcomes. Methods: We enrolled 40 patients with P. vivax malaria in northeastern Cambodia, where >17% treatment failures were previously reported. Patients were treated with CQ (30 mg/kg) and followed for 2 months, with frequent clinical examination and capillary blood sample collection for microscopy, molecular parasite detection and genotyping, and drug concentration measurements. Reinfections were prevented by relocating patients to a transmission-free area. Results: P. vivax parasites were eliminated in all patients by day 3. Genomic analyses revealed that all clones in polyclonal infections were cleared at the same rate, indicating their equal susceptibility to CQ. CQ blood concentrations were below the therapeutic level in all recurrent infections (24 of 40 patients), which were efficiently cleared by a second course of CQ treatment. Genotyping (128 SNPs barcode) and sequences of entire parasite genome (Whole-Genome Sequencing, Illumina) indicated that two thirds (6 of 8) of the recurrent parasites resulted from heterologous relapses whose 50% are from by sibling/recombinant clones. Conclusions: No evidence of CQ resistance was observed. Our data suggest that P. vivax antimalarial drug resistance is likely overestimated and that the current guidelines for clinical drug studies of P. vivax malaria need to be revised.


Assuntos
Cloroquina/uso terapêutico , Resistência a Medicamentos/efeitos dos fármacos , Resistência a Medicamentos/genética , Malária Vivax/tratamento farmacológico , Plasmodium vivax/efeitos dos fármacos , Plasmodium vivax/genética , Adolescente , Adulto , Antimaláricos/uso terapêutico , Camboja , Cloroquina/sangue , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Recidiva , Análise de Sequência de DNA , Falha de Tratamento , Sequenciamento Completo do Genoma , Adulto Jovem
5.
Biochem J ; 475(5): 873-886, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29444815

RESUMO

N-glycosylation is a common posttranslational modification of secreted and membrane proteins, catalyzed by the two enzymatic isoforms of the oligosaccharyltransferase, STT3A and STT3B. Missense mutations are the most common mutations in inherited diseases; however, missense mutations that generate extra, non-native N-glycosylation sites have not been well characterized. Coagulation factor VIII (FVIII) contains five consensus N-glycosylation sites outside its functionally dispensable B domain. We developed a computer program that identified hemophilia A mutations in FVIII that can potentially create ectopic glycosylation sites. We determined that 18 of these ectopic sites indeed become N-glycosylated. These sites span the domains of FVIII and are primarily associated with a severe disease phenotype. Using STT3A and STT3B knockout cells, we determined that ectopic glycosylation exhibited different degrees of dependence on STT3A and STT3B. By separating the effects of ectopic N-glycosylation from those due to underlying amino acid changes, we showed that ectopic glycans promote the secretion of some mutants, but impair the secretion of others. However, ectopic glycans that enhanced secretion could not functionally replace a native N-glycan in the same domain. Secretion-deficient mutants, but not mutants with elevated secretion levels, show increased association with the endoplasmic reticulum chaperones BiP (immunoglobulin heavy chain-binding protein) and calreticulin. Though secreted to different extents, all studied mutants exhibited lower relative activity than wild-type FVIII. Our results reveal differential impacts of ectopic N-glycosylation on FVIII folding, trafficking and activity, which highlight complex disease-causing mechanisms of FVIII missense mutations. Our findings are relevant to other secreted and membrane proteins with mutations that generate ectopic N-glycans.


Assuntos
Fator VIII/genética , Fator VIII/metabolismo , Mutação de Sentido Incorreto/fisiologia , Processamento de Proteína Pós-Traducional/genética , Sítios de Ligação/genética , Biologia Computacional , Fator VIII/química , Glicosilação , Humanos , Modelos Moleculares , Dobramento de Proteína , Transporte Proteico/genética , Análise de Sequência de DNA/métodos
6.
Drug Dev Res ; 76(2): 61-71, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25847616

RESUMO

The import of nuclear transcribed RNAs into mitochondria is an emerging area that presents a tremendous opportunity to develop human metabolic therapeutics. However, our knowledge base is quite limited. Much remains to be discovered regarding specific RNA localization and mechanisms of import. To identify novel RNAs imported into mitochondria, all RNAs within the mitochondria were characterized using next generation sequencing technology. Several nuclear transcribed RNAs were found within mitochondrial RNA (mtRNA) samples, including nuclear ribosomal RNAs, gamma satellite RNA and VL30 retroelement RNA. The presence of these RNAs within mitochondria coupled with RNA sequencing data from other laboratories investigating mtRNA processing, lead us to hypothesize that nuclease treatment of mitoplasts is insufficient for removing contaminating cytoplasmic RNAs. In contrast to traditional methodology, mitochondrial import was evaluated by qRT-PCR after stepwise removal of the outer mitochondrial membrane and subsequent lysis of mitochondria. This allowed identification of RNAs lost from the mitochondria with the same kinetics as mitochondrial DNA-transcribed RNAs. This approach provided an improved evaluation of nuclear RNA enrichment within mitochondrial membranes to characterize nuclease protection and mitochondrial import and identify false-positive detection errors. qRT-PCR results confirmed the presence of VL30 retroelement RNA within mitochondria and question the hypothesis that the RNA component of RNase P is imported. These results illustrate a reliable approach for evaluating the presence of RNAs within mitochondria and open new avenues of investigation relating to mtRNA biology and in targeting mitochondrial based therapeutics.


Assuntos
Mitocôndrias/genética , Transporte de RNA , RNA/metabolismo , Animais , Núcleo Celular/genética , Descoberta de Drogas , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos , Mitocôndrias/fisiologia , RNA/análise , RNA/isolamento & purificação , RNA Mitocondrial , RNA Ribossômico/metabolismo , RNA Satélite/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Retroelementos , Ribonucleases/metabolismo , Análise de Sequência de RNA
7.
bioRxiv ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39071299

RESUMO

Fusion-positive rhabdomyosarcoma is an aggressive pediatric cancer molecularly characterized by arrested myogenesis. The defining genetic driver, PAX3::FOXO1, functions as a chimeric gain-of-function transcription factor. An incomplete understanding of PAX3::FOXO1's in vivo epigenetic mechanisms has hindered therapeutic development. Here, we establish a PAX3::FOXO1 zebrafish injection model and semi-automated ChIP-seq normalization strategy to evaluate how PAX3::FOXO1 initially interfaces with chromatin in a developmental context. We investigated PAX3::FOXO1's recognition of chromatin and subsequent transcriptional consequences. We find that PAX3::FOXO1 interacts with inaccessible chromatin through partial/homeobox motif recognition consistent with pioneering activity. However, PAX3::FOXO1-genome binding through a composite paired-box/homeobox motif alters chromatin accessibility and redistributes H3K27ac to activate neural transcriptional programs. We uncover neural signatures that are highly representative of clinical rhabdomyosarcoma gene expression programs that are enriched following chemotherapy. Overall, we identify partial/homeobox motif recognition as a new mode for PAX3::FOXO1 pioneer function and identify neural signatures as a potentially critical PAX3::FOXO1 tumor initiation event.

8.
bioRxiv ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38826330

RESUMO

Genes encoding the RNA-binding proteins FUS, EWSR1, and TAF15 (FET proteins) are involved in chromosomal translocations in rare sarcomas. FET-rearranged sarcomas are often aggressive malignancies affecting patients of all ages. New therapies are needed. These translocations fuse the 5' portion of the FET gene with a 3' partner gene encoding a transcription factor (TF). The resulting fusion proteins are oncogenic TFs with a FET protein low complexity domain (LCD) and a DNA binding domain. FET fusion proteins have proven stubbornly difficult to target directly and promising strategies target critical co-regulators. One candidate is lysine specific demethylase 1 (LSD1). LSD1 is recruited by multiple FET fusions, including EWSR1::FLI1. LSD1 promotes EWSR1::FLI1 activity and treatment with the noncompetitive inhibitor SP-2509 blocks EWSR1::FLI1 transcriptional function. A similar molecule, seclidemstat (SP-2577), is currently in clinical trials for FET-rearranged sarcomas (NCT03600649). However, whether seclidemstat has pharmacological activity against FET fusions has not been demonstrated. Here, we evaluate the in vitro potency of seclidemstat against multiple FET-rearranged sarcoma cell lines, including Ewing sarcoma, desmoplastic small round cell tumor, clear cell sarcoma, and myxoid liposarcoma. We also define the transcriptomic effects of seclidemstat treatment and evaluated the activity of seclidemstat against FET fusion transcriptional regulation. Seclidemstat showed potent activity in cell viability assays across FET-rearranged sarcomas and disrupted the transcriptional function of all tested fusions. Though epigenetic and targeted inhibitors are unlikely to be effective as a single agents in the clinic, these data suggest seclidemstat remains a promising new treatment strategy for patients with FET-rearranged sarcomas.

9.
bioRxiv ; 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38260361

RESUMO

Purpose: Lung metastasis is responsible for nearly all deaths caused by osteosarcoma, the most common pediatric bone tumor. How malignant bone cells coerce the lung microenvironment to support metastatic growth is unclear. This study delineates how osteosarcoma cells educate the lung microenvironment during metastatic progression. Experimental design: Using single-cell transcriptomics (scRNA-seq), we characterized genome- and tissue-wide molecular changes induced within lung tissues by disseminated osteosarcoma cells in both immunocompetent murine models of metastasis and patient samples. We confirmed transcriptomic findings at the protein level and determined spatial relationships with multi-parameter immunofluorescence. We evaluated the ability of nintedanib to impair metastatic colonization and prevent osteosarcoma-induced education of the lung microenvironment in both immunocompetent murine osteosarcoma and immunodeficient human xenograft models. Results: Osteosarcoma cells induced acute alveolar epithelial injury upon lung dissemination. scRNA-seq demonstrated that the surrounding lung stroma adopts a chronic, non-resolving wound-healing phenotype similar to that seen in other models of lung injury. Accordingly, metastasis-associated lung demonstrated marked fibrosis, likely due to the accumulation of pathogenic, pro-fibrotic, partially-differentiated epithelial intermediates. Inhibition of fibrotic pathways with nintedanib prevented metastatic progression in multiple murine and human xenograft models. Conclusions: Our work demonstrates that osteosarcoma cells co-opt fibrosis to promote metastatic outgrowth. When harmonized with data from adult epithelial cancers, our results support a generalized model wherein aberrant mesenchymal-epithelial interactions are critical for promoting lung metastasis. Adult epithelial carcinomas induce fibrotic pathways in normal lung fibroblasts, whereas osteosarcoma, a pediatric mesenchymal tumor, exhibits fibrotic reprogramming in response to the aberrant wound-healing behaviors of an otherwise normal lung epithelium, which are induced by tumor cell interactions. Statement of translational relevance: Therapies that block metastasis have the potential to save the majority of lives lost due to solid tumors. Disseminated tumor cells must educate the foreign, inhospitable microenvironments they encounter within secondary organs to facilitate metastatic colonization. Our study elucidated that disseminated osteosarcoma cells survive within the lung by co-opting and amplifying the lung's endogenous wound healing response program. More broadly, our results support a model wherein mesenchymal-epithelial cooperation is a key driver of lung metastasis. Osteosarcoma, a pediatric mesenchymal tumor, undergoes lung epithelial induced fibrotic activation while also transforming normal lung epithelial cells towards a fibrosis promoting phenotype. Conversely, adult epithelial carcinomas activate fibrotic signaling in normal lung mesenchymal fibroblasts. Our data implicates fibrosis and abnormal wound healing as key drivers of lung metastasis across multiple tumor types that can be targeted therapeutically to disrupt metastasis progression.

10.
Cell Oncol (Dordr) ; 47(1): 259-282, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37676378

RESUMO

PURPOSE: For patients with osteosarcoma, disease-related mortality most often results from lung metastasis-a phenomenon shared with many solid tumors. While established metastatic lesions behave aggressively, very few of the tumor cells that reach the lung will survive. By identifying mechanisms that facilitate survival of disseminated tumor cells, we can develop therapeutic strategies that prevent and treat metastasis. METHODS: We analyzed single cell RNA-sequencing (scRNAseq) data from murine metastasis-bearing lungs to interrogate changes in both host and tumor cells during colonization. We used these data to elucidate pathways that become activated in cells that survive dissemination and identify candidate host-derived signals that drive activation. We validated these findings through live cell reporter systems, immunocytochemistry, and fluorescent immunohistochemistry. We then validated the functional relevance of key candidates using pharmacologic inhibition in models of metastatic osteosarcoma. RESULTS: Expression patterns suggest that the MAPK pathway is significantly elevated in early and established metastases. MAPK activity correlates with expression of anti-apoptotic genes, especially MCL1. Niche cells produce growth factors that increase ERK phosphorylation and MCL1 expression in tumor cells. Both early and established metastases are vulnerable to MCL1 inhibition, but not MEK inhibition in vivo. Combining MCL1 inhibition with chemotherapy both prevented colonization and eliminated established metastases in murine models of osteosarcoma. CONCLUSION: Niche-derived growth factors drive MAPK activity and MCL1 expression in osteosarcoma, promoting metastatic colonization. Although later metastases produce less MCL1, they remain dependent on it. MCL1 is a promising target for clinical trials in both human and canine patients.


Assuntos
Neoplasias Ósseas , Neoplasias Pulmonares , Proteína de Sequência 1 de Leucemia de Células Mieloides , Osteossarcoma , Animais , Cães , Humanos , Camundongos , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular , Pulmão/metabolismo , Neoplasias Pulmonares/secundário , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Osteossarcoma/patologia , Fosforilação
11.
bioRxiv ; 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38464161

RESUMO

We previously reported that the DNA alkylator and transcriptional-blocking chemotherapeutic agent trabectedin enhances oncolytic herpes simplex viroimmunotherapy in human sarcoma xenograft models, though the mechanism remained to be elucidated. Here we report trabectedin disrupts the intrinsic cellular anti-viral response which increases viral transcript spread throughout the human tumor cells. We also extended our synergy findings to syngeneic murine sarcoma models, which are poorly susceptible to virus infection. In the absence of robust virus replication, we found trabectedin enhanced viroimmunotherapy efficacy by reducing immunosuppressive macrophages and stimulating granzyme expression in infiltrating T and NK cells to cause immune-mediated tumor regressions. Thus, trabectedin enhances both the direct virus-mediated killing of tumor cells and the viral-induced activation of cytotoxic effector lymphocytes to cause tumor regressions across models. Our data provide a strong rationale for clinical translation as both mechanisms should be simultaneously active in human patients.

12.
Biochim Biophys Acta ; 1820(5): 601-7, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-21854831

RESUMO

BACKGROUND: Mutations in mitochondrial DNA (mtDNA) cause a variety of pathologic states in human patients. Development of animal models harboring mtDNA mutations is crucial to elucidating pathways of disease and as models for preclinical assessment of therapeutic interventions. SCOPE OF REVIEW: This review covers the knowledge gained through animal models of mtDNA mutations and the strategies used to produce them. Animals derived from spontaneous mtDNA mutations, somatic cell nuclear transfer (SCNT), nuclear translocation of mitochondrial genes followed by mitochondrial protein targeting (allotopic expression), mutations in mitochondrial DNA polymerase gamma, direct microinjection of exogenous mitochondria, and cytoplasmic hybrid (cybrid) embryonic stem cells (ES cells) containing exogenous mitochondria (transmitochondrial cells) are considered. MAJOR CONCLUSIONS: A wide range of strategies have been developed and utilized in attempts to mimic human mtDNA mutation in animal models. Use of these animals in research studies has shed light on mechanisms of pathogenesis in mitochondrial disorders, yet methods for engineering specific mtDNA sequences are still in development. GENERAL SIGNIFICANCE: Research animals containing mtDNA mutations are important for studies of the mechanisms of mitochondrial disease and are useful for the development of clinical therapies. This article is part of a Special Issue entitled Biochemistry of Mitochondria.


Assuntos
DNA Mitocondrial/genética , Modelos Animais de Doenças , Mitocôndrias/patologia , Doenças Mitocondriais/genética , Doenças Mitocondriais/patologia , Mutação/genética , Animais , Humanos
13.
Cancer Res Commun ; 3(4): 564-575, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37066022

RESUMO

Osteosarcoma is an aggressive malignancy characterized by high genomic complexity. Identification of few recurrent mutations in protein coding genes suggests that somatic copy-number aberrations (SCNA) are the genetic drivers of disease. Models around genomic instability conflict-it is unclear whether osteosarcomas result from pervasive ongoing clonal evolution with continuous optimization of the fitness landscape or an early catastrophic event followed by stable maintenance of an abnormal genome. We address this question by investigating SCNAs in >12,000 tumor cells obtained from human osteosarcomas using single-cell DNA sequencing, with a degree of precision and accuracy not possible when inferring single-cell states using bulk sequencing. Using the CHISEL algorithm, we inferred allele- and haplotype-specific SCNAs from this whole-genome single-cell DNA sequencing data. Surprisingly, despite extensive structural complexity, these tumors exhibit a high degree of cell-cell homogeneity with little subclonal diversification. Longitudinal analysis of patient samples obtained at distant therapeutic timepoints (diagnosis, relapse) demonstrated remarkable conservation of SCNA profiles over tumor evolution. Phylogenetic analysis suggests that the majority of SCNAs were acquired early in the oncogenic process, with relatively few structure-altering events arising in response to therapy or during adaptation to growth in metastatic tissues. These data further support the emerging hypothesis that early catastrophic events, rather than sustained genomic instability, give rise to structural complexity, which is then preserved over long periods of tumor developmental time. Significance: Chromosomally complex tumors are often described as genomically unstable. However, determining whether complexity arises from remote time-limited events that give rise to structural alterations or a progressive accumulation of structural events in persistently unstable tumors has implications for diagnosis, biomarker assessment, mechanisms of treatment resistance, and represents a conceptual advance in our understanding of intratumoral heterogeneity and tumor evolution.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Filogenia , Variações do Número de Cópias de DNA/genética , Recidiva Local de Neoplasia , Osteossarcoma/genética , Instabilidade Genômica/genética , Neoplasias Ósseas/genética
14.
Cell Rep ; 42(1): 112013, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36656711

RESUMO

Clinical sequencing efforts are rapidly identifying sarcoma gene fusions that lack functional validation. An example is the fusion of transcriptional coactivators, VGLL2-NCOA2, found in infantile rhabdomyosarcoma. To delineate VGLL2-NCOA2 tumorigenic mechanisms and identify therapeutic vulnerabilities, we implement a cross-species comparative oncology approach with zebrafish, mouse allograft, and patient samples. We find that VGLL2-NCOA2 is sufficient to generate mesenchymal tumors that display features of immature skeletal muscle and recapitulate the human disease. A subset of VGLL2-NCOA2 zebrafish tumors transcriptionally cluster with embryonic somitogenesis and identify VGLL2-NCOA2 developmental programs, including a RAS family GTPase, ARF6. In VGLL2-NCOA2 zebrafish, mouse, and patient tumors, ARF6 is highly expressed. ARF6 knockout suppresses VGLL2-NCOA2 oncogenic activity in cell culture, and, more broadly, ARF6 is overexpressed in adult and pediatric sarcomas. Our data indicate that VGLL2-NCOA2 is an oncogene that leverages developmental programs for tumorigenesis and that reactivation or persistence of ARF6 could represent a therapeutic opportunity.


Assuntos
Rabdomiossarcoma , Sarcoma , Criança , Adulto , Humanos , Animais , Camundongos , Peixe-Zebra/metabolismo , Fatores de Transcrição/genética , Rabdomiossarcoma/genética , Rabdomiossarcoma/patologia , Fusão Gênica , Coativador 2 de Receptor Nuclear/genética , Proteínas Musculares/genética
15.
Reprod Med Biol ; 10(4): 251-258, 2011 12.
Artigo em Inglês | MEDLINE | ID: mdl-29662358

RESUMO

Mitochondrial biology plays an important role in the reproductive process, with influence on germ cell development and quality as well as embryonic development and reproductive success. This review outlines the role of mitochondrial genetics and function in reproductive biology, including a discussion of general mitochondrial function, genetics and germline transmission. Also highlighted are the mitochondrial morphologic changes that occur during oogenesis and the role these changes play in the mitochondrial bottleneck that influences the distribution of deleterious mitochondrial genomes to offspring. The review covers the influence of mitochondria in embryonic stem cell and induced pluripotent stem cell biology and development. Lastly, the role of mitochondrial biology in assisted reproductive techniques is discussed.

16.
Biol Open ; 10(7)2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34156069

RESUMO

Vector-borne pathogens cause many human infectious diseases and are responsible for high mortality and morbidity throughout the world. They can also cause livestock epidemics with dramatic social and economic consequences. Due to its high costs, vector-borne disease surveillance is often limited to current threats, and the investigation of emerging pathogens typically occurs after the reports of clinical cases. Here, we use high-throughput sequencing to detect and identify a wide range of parasites and viruses carried by mosquitoes from Cambodia, Guinea, Mali and the USA. We apply this approach to individual Anopheles mosquitoes as well as pools of mosquitoes captured in traps; and compare the outcomes of this assay when applied to DNA or RNA. We identified known human and animal pathogens and mosquito parasites belonging to a wide range of taxa, as well as DNA sequences from previously uncharacterized organisms. Our results also revealed that analysis of the content of an entire trap could be an efficient approach to monitor and identify rare vector-borne pathogens in large surveillance studies. Overall, we describe a high-throughput and easy-to-customize assay to screen for a wide range of pathogens and efficiently complement current vector-borne disease surveillance approaches.


Assuntos
Arbovírus/isolamento & purificação , Culicidae/microbiologia , Eucariotos/isolamento & purificação , Ensaios de Triagem em Larga Escala/métodos , Parasitos/isolamento & purificação , Animais , Humanos , Mosquitos Vetores/microbiologia
17.
Parasit Vectors ; 13(1): 619, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33303025

RESUMO

BACKGROUND: The commensal microbiota of mosquitoes impacts their development, immunity, and competency, and could provide a target for alternative entomological control approaches. However, despite the importance of the mosquito/microbiota interactions, little is known about the relative contribution of endogenous and exogenous factors in shaping the bacterial communities of mosquitoes. METHODS: We used a high-throughput sequencing-based assay to characterize the bacterial composition and diversity of 665 individual field-caught mosquitoes, as well as their species, genotype at an insecticide resistance locus, blood-meal composition, and the eukaryotic parasites and viruses they carry. We then used these data to rigorously estimate the individual effect of each parameter on the bacterial diversity as well as the relative contribution of each parameter to the microbial composition. RESULTS: Overall, multivariate analyses did not reveal any significant contribution of the mosquito species, insecticide resistance, or blood meal to the bacterial composition of the mosquitoes surveyed, and infection with parasites and viruses only contributed very marginally. The main driver of the bacterial diversity was the location at which each mosquito was collected, which explained roughly 20% of the variance observed. CONCLUSIONS: This analysis shows that when confounding factors are taken into account, the site at which the mosquitoes are collected is the main driver of the bacterial diversity of wild-caught mosquitoes, although further studies will be needed to determine which specific components of the local environment affect bacterial composition.


Assuntos
Anopheles/microbiologia , Resistência a Inseticidas , Microbiota , Controle de Mosquitos/métodos , Mosquitos Vetores/microbiologia , Animais
18.
Microbiome ; 6(1): 195, 2018 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-30373673

RESUMO

BACKGROUND: Several of the most devastating human diseases are caused by eukaryotic parasites transmitted by arthropod vectors or through food and water contamination. These pathogens only represent a fraction of all unicellular eukaryotes and helminths that are present in the environment and many uncharacterized organisms might have subtle but pervasive effects on health, including by modifying the microbiome where they reside. Unfortunately, while we have modern molecular tools to characterize bacterial and, to a lesser extent, fungal communities, we lack suitable methods to comprehensively investigate and characterize most unicellular eukaryotes and helminths: the detection of these organisms often relies on microscopy that cannot differentiate related organisms, while molecular assays can only detect the pathogens specifically tested. RESULTS: Here, we describe a novel sequencing-based assay, akin to bacterial 16S rRNA sequencing, that enables high-throughput detection and characterization of a wide range of unicellular eukaryotes and helminths, including those from taxonomical groups containing all common human parasites. We designed and evaluated taxon-specific PCR primer pairs that selectively amplify all species from eight taxonomical groups (Apicomplexa, Amoeba, Diplomonadida, Kinetoplastida, Parabasalia, Nematoda, Platyhelminthes, and Microsporidia). We then used these primers to screen DNA extracted from clinical, biological, and environmental samples, and after next-generation sequencing, identified both known and previously undescribed organisms from most taxa targeted. CONCLUSIONS: This novel high-throughput assay enables comprehensive detection and identification of eukaryotic parasites and related organisms, from a wide range of complex biological and environmental samples. This approach can be easily deployed to many settings and will efficiently complement existing methods and provide a holistic perspective on the microbiome.


Assuntos
Parasitologia de Alimentos/métodos , Helmintos/classificação , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Parasitos/classificação , Reação em Cadeia da Polimerase/métodos , Animais , Vetores Artrópodes/parasitologia , DNA de Protozoário/genética , Contaminação de Alimentos/análise , Helmintos/genética , Helmintos/isolamento & purificação , Humanos , Parasitos/genética , Parasitos/isolamento & purificação , Poluição da Água/análise
19.
mBio ; 9(1)2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29362233

RESUMO

Plasmodium vivax parasites have a unique dormant stage that can cause relapses weeks or months after the initial infection. These dormant parasites are among the main challenges of vivax malaria control as they constitute a reservoir that is difficult to eliminate. Since field studies are confounded by reinfections and possible recrudescence of drug-resistant parasites, most analyses of P. vivax relapses have focused on travelers returning from regions of malaria endemicity. However, it is not clear whether these individuals accurately recapitulate the relapse patterns of repeatedly infected individuals residing in areas of endemicity. Here, we present analyses of vivax malaria patients enrolled in a tightly controlled field study in Cambodia. After antimalarial drug treatment was administered, we relocated 20 individuals to a nontransmission area and followed them for 60 days, with blood collection performed every second day. Our analyses reveal that 60% of the patients relapsed during the monitoring period. Using whole-genome sequencing and high-throughput genotyping, we showed that relapses in Cambodia are often polyclonal and that the relapsing parasites harbor various degrees of relatedness to the parasites present in the initial infection. Our analyses also showed that clone populations differed dynamically, with new clones emerging during the course of the relapsing infections. Overall, our study data show that it is possible to investigate the patterns, dynamics, and diversity of P. vivax relapses of individuals living in a region of malaria endemicity and reveal that P. vivax relapses are much more pervasive and complex than previously considered. (This study has been registered at ClinicalTrials.gov under registration no. NCT02118090)IMPORTANCEP. vivax parasites can remain dormant in the liver and relapse weeks or months after the initial infection, greatly complicating malaria control and elimination efforts. The few investigations of this dormant stage have relied on travelers and military personnel returning from areas of malaria endemicity. However, it is not clear whether these individuals, exposed to a limited number of infections, accurately represent the patterns of relapses of individuals living in areas of endemicity, who are repeatedly infected by P. vivax parasites. Our study combined tightly controlled fieldwork with comprehensive genomic analyses, and our report provides a first opportunity to investigate the patterns, dynamics, and diversity of P. vivax relapses directly with individuals living in areas of endemicity.


Assuntos
Variação Genética , Genótipo , Malária Vivax/parasitologia , Plasmodium vivax/classificação , Plasmodium vivax/genética , Camboja , Feminino , Técnicas de Genotipagem , Humanos , Masculino , Recidiva , Sequenciamento Completo do Genoma
20.
PLoS One ; 12(10): e0186290, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29049324

RESUMO

The study of the microbial communities has gained traction in recent years with the advent of next-generation sequencing with, or without, PCR-based amplification of the 16S ribosomal RNA region. Such studies have been applied to topics as diverse as human health and environmental ecology. Fewer studies have investigated taxa outside of bacteria, however. We present here data demonstrating the utility of studying taxa outside of bacteria including algae, diatoms, archaea and fungi. Here, we show how location along the Cuyahoga River as well as a transient rainfall event heavily influence the microbial composition. Our data reveal how individual OTUs vary between samples and how the patterns of OTU abundance can accurately predict sampling location. The clustering of samples reveals that these taxa are all sensitive to water conditions in unique ways and demonstrate that, for our dataset, algae was most distinctive between sample groups, surpassing bacteria. Diversity between sampling sites could allow studies investigating pollution or water quality to identify marker OTUs or patterns of OTU abundance as indicators to assess environmental conditions or the impact of human activity. We also directly compare data derived from primers amplifying distinct taxa and show that taxa besides bacteria are excellent indicators of water condition.


Assuntos
Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Fungos/isolamento & purificação , Rios , Microbiologia da Água , Archaea/genética , Bactérias/genética , Fungos/genética , Análise de Componente Principal , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA