Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Small ; 18(13): e2107298, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35150063

RESUMO

Electronic textiles (e-textiles) that combine the wearing comfort of textiles and the functionality of soft electronics are highly demanded in wearable applications. However, fabricating robust high-performance stretchable e-textiles with good abrasion resistance and high-resolution aesthetic patterns for high-throughput manufacturing and practical applications remains challenging. Herein, the authors report a new multifunctional e-textile fabricated via screen printing of the water-based silver fractal dendrites conductive ink. The as-fabricated e-textiles spray-coated with the invisible waterproofing agent exhibit superior flexibility, water resistance, wearing comfort, air permeability, and abrasion resistance, achieving a low sheet resistance of 0.088 Ω sq-1 , high stretchability of up to 154%, and excellent dynamic stability for over 1000 cyclic testing (ε = 100%). The printed e-textiles can be explored as strain sensors and ultralow voltage-driven Joule heaters driven for personalized thermal management. They finally demonstrate an integrated aesthetic smart clothing made of their multifunctional e-textiles for human motion detection and body-temperature management. The printed e-textiles provide new opportunities for developing novel wearable electronics and smart clothing for future commercial applications.


Assuntos
Dispositivos Eletrônicos Vestíveis , Condutividade Elétrica , Eletrônica , Estética , Humanos , Têxteis
2.
Small ; 17(46): e2103125, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34612010

RESUMO

Stimuli-responsive crystals capable of energy conversion have emerged as promising materials for smart sensors, actuators, wearable devices, and robotics. Here, a novel ferrocene-based organic molecule crystal (Fc-Cz) that possesses anisotropic piezoelectric, optical, and mechanical properties is reported. It is demonstrated that the new crystal Fc-Cz can be used as an ultrasensitive piezoelectric material in fabricating strain sensors. The flexible sensor made of crystal Fc-Cz can detect small strains/deformations and motions with a fast response speed. Analysis based on density functional theory (DFT) indicates that an external pressure can affect the dipole moment by changing the molecular configuration of the asymmetric single crystal Fc-Cz in the crystalline state, leading to a change of polarity, and thereby an enhanced dielectric constant. This work demonstrates a new artificial organic small molecule for high-performance tactile sensors, indicating its great potential for developing low-cost flexible wearable sensors.


Assuntos
Polímeros Responsivos a Estímulos , Dispositivos Eletrônicos Vestíveis , Metalocenos , Tato
3.
Appl Opt ; 58(6): 1400-1407, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30874024

RESUMO

Dark offset is one of the key parameters for Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) high-gain stage (HGS) radiometric calibration, whose accuracy strongly impacts applications of DNB low-light detection for Earth observation at nighttime. Currently, DNB observation of the VIIRS onboard calibrator blackbody (OBCBB) view, together with its observation of deep space during the spacecraft pitch maneuver performed early in the mission, has been used to compute the HGS dark offset continuously. However, the relationship between the DNB OBCBB data and the Earth view (EV) data is unclear due to electronic timing differences between these two views. It is questionable whether the DNB OBCBB data can monitor the EV HGS dark offset change. Through comprehensive analysis of the DNB OBCBB data and EV data acquired from the monthly special acquisitions known as the VIIRS recommended operating procedures (VROPs), we have shown that the OBCBB data can only track the dark current component of the DNB HGS EV dark offset, instead of the total dark offset. The DNB observation of deep space during the spacecraft pitch maneuver was also contaminated by starlight. With such background, in this paper we propose an improved algorithm for determining the DNB HGS dark offset. By combined use of the DNB OBCBB data and the DNB VROP data, the generated DNB HGS dark offset is both free from light contamination and capable of tracking continuous drift. The improved algorithm could potentially improve the DNB radiometric performance at low radiance level. Our results provide a solid theoretical basis for dark offset calibration of the VIIRS DNB onboard Suomi National Polar-Orbiting Partnership satellite and the following Joint Polar Satellite System satellites.

4.
Small ; 14(52): e1803976, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30450784

RESUMO

Supercapacitors (SCs) have shown great potential for mobile energy storage technology owing to their long-term durability, electrochemical stability, structural simplicity, as well as exceptional power density without much compromise in the energy density and cycle life parameters. As a result, stretchable SC devices have been incorporated in a variety of emerging electronics applications ranging from wearable electronic textiles to microrobots to integrated energy systems. In this review, the recent progress and achievements in the field of stretchable SCs enabled by low-dimensional nanomaterials such as polypyrrole, carbon nanotubes, and graphene are presented. First, the three major categories of stretchable supercapacitors are discussed: double-layer supercapacitors, pseudo-supercapacitors, and hybrid supercapacitors. Then, the representative progress in developing stretchable electrodes with low-dimensional (0D, 1D, and 2D) nanomaterials is described. Next, the design strategies enabling the stretchability of the devices, including the wavy-shape design, wire-shape design, textile-shape design, kirigami-shape design, origami-shape design, and serpentine bridge-island design are emphasized, with the aim of improving the electrochemical performance under the complex stretchability conditions that may be encountered in practical applications. Finally, the newest developments, major challenges, and outlook in the field of stretchable SC development and manufacturing are discussed.

5.
NMR Biomed ; 31(9): e3963, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30011104

RESUMO

To demonstrate the capability of a wireless amplified NMR detector (WAND) to improve the visibility of lesion heterogeneity without the use of exogenous contrast agents, a cylindrically symmetric WAND was constructed to sensitively detect and simultaneously amplify MR signals emitted from adjacent tissues. Based on a two-leg high-pass birdcage coil design, this WAND could be activated by a pumping field aligned along the main field (B0 ), without perturbing MR signal reception. Compared with an equivalent pair of external detectors, the WAND could achieve more than 10-fold gain for immediately adjacent regions. Even for regions with 3.4 radius distance separation from the detector's cylindrical center, the WAND was at least 1.4 times more sensitive than an equivalent pair of surface arrays or at least twice as sensitive as a single-sided external surface detector. When the WAND was inserted into a rat's rectum to observe adjacent tumors implanted beneath the mucosa, it could enhance the detection sensitivity of lesion regions, and thus enlarge the observable signal difference between heterogeneous tissues and clearly identify lesion boundaries as continuous lines in the intensity gradient profile. Hyperintense regions observable by the WAND existed due to higher levels of blood supply, which was indicated by a similar pattern of signal enhancement after contrast agent administration. By better observing the endogenous signal contrast, the endoluminal WAND could characterize lesions without the use of exogenous contrast agents, and thus reduce contrast-induced toxicity.


Assuntos
Amplificadores Eletrônicos , Processamento de Imagem Assistida por Computador , Espectroscopia de Ressonância Magnética/instrumentação , Tecnologia sem Fio/instrumentação , Animais , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Ratos
6.
Appl Opt ; 57(32): 9533-9542, 2018 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-30461732

RESUMO

Radiometric calibration of the Suomi National Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite (VIIRS) reflective solar bands relies mainly on the onboard solar diffuser (SD) observations. The SD reflectance degrades over time due to the exposure to solar ultraviolet radiation. The uncertainties embedded in characterizing the SD bidirectional reflectance distribution function (BRDF) directly affect the accuracy of sensor radiometric calibration coefficients, such as F-factors, which are proxies of detector gain. The Moon-based radiometric calibration provides an independent way of validating and correcting the SD-based calibration. This study focuses on the comparison of the long-term SD F-factors with lunar F-factors by using two independent lunar irradiance models, i.e., Miller and Turner (MT) model and the Global Space-based Inter-Calibration System Implementation of ROLO (GIRO) model. To monitor the long-term detector response changes, the lunar F-factor differences are matched to the SD F-factors by applying the best fit scaling factors. Overall, the two lunar F-factors agree well, within 2% of one sigma standard deviation in the reflective solar bands compared to the SD F-factors. The lifetime standard deviations of difference between the GIRO-based lunar and SD F-factors show better long-term match than that of MT-based lunar F-factors. The GIRO-based lunar F-factors show increasing differences over time in comparison with the SD F-factors especially for bands M1 to M4, which indicates the underestimation of the VIIRS detector degradation by SD F-factors for these bands. Using standard SD calibration method and the GIRO-based lunar model, long-term difference between the lunar and SD F-factors shows there are 1.6%, 1.3%, 1.0%, and 0.9% increases in lunar F-factor trend for bands M1 to M4 at the end of year 2015. To mitigate these time-dependent biases, NOAA Ocean Color (OC) group and NASA VIIRS characterization support team (VCST) developed lunar correction methods and applied them to their specific products. However, the amounts of band-dependent lunar corrections are not consistent between these two teams, especially in the short-wavelength bands from M1 to M4, depending on the versions of lunar models and SD F-factor calculation algorithms. Using the standard SD F-factor algorithm and the multi-agency endorsed GIRO model, we derived lunar correction factors based on the quadratic fits between the SD and lunar F-factors. The differences with the NOAA OC group and NASA VCST team are compared and described in this study.

7.
Biofouling ; 32(9): 1017-28, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27560712

RESUMO

Silicone-oil additives are often used in fouling-release silicone coatings to reduce the adhesion strength of barnacles and other biofouling organisms. This study follows on from a recently reported active approach to detach barnacles, which was based on the surface strain of elastomeric materials, by investigating a new, dual-action approach to barnacle detachment using Ecoflex®-based elastomers incorporated with poly(dimethylsiloxane)-based oil additives. The experimental results support the hypothesis that silicone-oil additives reduce the amount of substratum strain required to detach barnacles. The study also de-coupled the two effects of silicone oils (ie surface-activity and alteration of the bulk modulus) and examined their contributions in reducing barnacle adhesion strength. Further, a finite element model based on fracture mechanics was employed to qualitatively understand the effects of surface strain and substratum modulus on barnacle adhesion strength. The study demonstrates that dynamic substratum deformation of elastomers with silicone-oil additives provides a bifunctional approach towards management of biofouling by barnacles.


Assuntos
Incrustação Biológica/prevenção & controle , Dimetilpolisiloxanos/química , Elastômeros de Silicone/química , Óleos de Silicone/química , Thoracica/fisiologia , Animais , Propriedades de Superfície
8.
Appl Opt ; 54(16): 5109-16, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26192672

RESUMO

The Suomi National Polar-orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) sensor data record (SDR) product achieved validated maturity status in March 2014 after roughly two years of on-orbit characterization (S-NPP spacecraft launched on 28 October 2011). During post-launch analysis the VIIRS Sea Surface Temperature (SST) Environmental Data Record (EDR) team observed an anomalous striping pattern in the daytime SST data. Daytime SST retrievals use the two VIIRS long-wave infrared bands: M15 (10.7 µm) and M16 (11.8 µm). To assess possible root causes due to detector-level spectral response function (SRF) effects, a study was conducted to compare the radiometric response of the detector-level and operational-band averaged SRFs of VIIRS bands M15 and M16. The study used simulated hyperspectral blackbody radiance data and clear-sky ocean hyperspectral radiances under different atmospheric conditions. It was concluded that the SST product is likely impacted by small differences in detector-level SRFs and that if users require optimal radiometric performance, detector-level processing is recommended for both SDR and EDR products. Future work should investigate potential SDR product improvements through detector-level processing in support of the generation of Suomi NPP VIIRS climate quality SDRs.

9.
Soft Matter ; 10(38): 7519-27, 2014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-25097115

RESUMO

Hydrogels' applications are usually limited by their weak mechanical properties. Despite recent great progress in developing tough hydrogels, it is still challenging to achieve high values of , toughness and modulus all together in synthetic hydrogels. In this paper, we designed highly stretchable, tough, yet stiff hydrogel composites via a combination of nanoscale hybrid crosslinking and macroscale fiber reinforcement. The hydrogel composites were constructed by impregnating a 3D-printed thermoplastic-fiber mesh with a tough hydrogel crosslinked both covalently and ionically. The hydrogel composites can achieve a fracture energy of over 30,000 J m(-2), a modulus of over 6 MPa, and can be stretched over 2.8 times even in the presence of large structural defects. The enhancement of toughness in the new hydrogel composites relies on multiple pairs of toughening mechanisms which span over multiple length scales. A theoretical model is further developed to predict the toughness and modulus of the hydrogel composites and guide the design of future materials.

10.
Artigo em Inglês | MEDLINE | ID: mdl-26601032

RESUMO

International scientific standards organizations created standards on evaluating uncertainty in the early 1990s. Although scientists from many fields use these standards, they are not consistently implemented in the remote sensing community, where traditional error analysis framework persists. For a satellite instrument under development, this can create confusion in showing whether requirements are met. We aim to create a methodology for translating requirements from the error analysis framework to the modern uncertainty approach using the product level requirements of the Advanced Baseline Imager (ABI) that will fly on the Geostationary Operational Environmental Satellite R-Series (GOES-R). In this paper we prescribe a method to combine several measurement performance requirements, written using a traditional error analysis framework, into a single specification using the propagation of uncertainties formula. By using this approach, scientists can communicate requirements in a consistent uncertainty framework leading to uniform interpretation throughout the development and operation of any satellite instrument.

11.
J Res Natl Inst Stand Technol ; 119: 235-55, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-26601030

RESUMO

This paper traces the cooperative efforts of scientists at the National Oceanic and Atmospheric Administration (NOAA) and the National Institute of Standards and Technology (NIST) to improve the calibration of operational satellite sensors for remote sensing of the Earth's land, atmosphere and oceans. It gives a chronological perspective of the NOAA satellite program and the interactions between the two agencies' scientists to address pre-launch calibration and issues of sensor performance on orbit. The drive to improve accuracy of measurements has had a new impetus in recent years because of the need for improved weather prediction and climate monitoring. The highlights of this cooperation and strategies to achieve SI-traceability and improve accuracy for optical satellite sensor data are summarized.

12.
Appl Opt ; 52(31): 7660-8, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24216671

RESUMO

The Advanced Baseline Imager (ABI), which will be launched in late 2015 on the National Oceanic and Atmospheric Administration's Geostationary Operational Environmental Satellite R-series satellite, will be evaluated in terms of its data quality postlaunch through comparisons with other satellite sensors such as the recently launched Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership satellite. The ABI has completed much of its prelaunch characterization and its developers have generated and released its channel spectral response functions (response versus wavelength). Using these responses and constraining a radiative transfer model with ground reflectance, aerosol, and water vapor measurements, we simulate observed top of atmosphere (TOA) reflectances for analogous visible and near infrared channels of the VIIRS and ABI sensors at the Sonoran Desert and White Sands National Monument sites and calculate the radiometric biases and their uncertainties. We also calculate sensor TOA reflectances using aircraft hyperspectral data from the Airborne Visible/Infrared Imaging Spectrometer to validate the uncertainties in several of the ABI and VIIRS channels and discuss the potential for validating the others. Once on-orbit, calibration scientists can use these biases to ensure ABI data quality and consistency to support the numerical weather prediction community and other data users. They can also use the results for ABI or VIIRS anomaly detection and resolution.

13.
Bioinspir Biomim ; 17(5)2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35636388

RESUMO

Soft robots have attracted increasing attention due to their excellent versatility and broad applications. In this article, we present a minimally designed soft crawling robot (SCR) capable of robust locomotion in unstructured pipes with various geometric/material properties and surface topology. In particular, the SCR can squeeze through narrow pipes smaller than its cross section and propel robustly in spiked pipes. The gait pattern and locomotion mechanism of this robot are experimentally investigated and analysed by the finite element analysis, revealing that the resultant forward frictional force is generated due to the asymmetric mechanical properties along the length direction of the robot. The proposed simple yet working SCR could inspire novel designs and applications of soft robots in unstructured narrow canals such as large intestines or industrial pipelines.


Assuntos
Robótica , Análise de Elementos Finitos , Fricção , Marcha , Locomoção
14.
Biosensors (Basel) ; 12(10)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36291044

RESUMO

E. coli O157:H7, one of the major foodborne pathogens, can cause a significant threat to the safety of foods. The aim of this research is to develop an activated biochar-based immunosensor that can rapidly detect E. coli O157:H7 cells without incubation in pure culture. Biochar was developed from corn stalks using proprietary reactors and then activated using steam-activation treatment. The developed activated biochar presented an enhanced surface area of 830.78 m2/g. To develop the biosensor, the gold electrode of the sensor was first coated with activated biochar and then functionalized with streptavidin as a linker and further immobilized with biotin-labeled anti-E. coli polyclonal antibodies (pAbs). The optimum concentration of activated biochar for sensor development was determined to be 20 mg/mL. Binding of anti-E. coli pAbs with E. coli O157:H7 resulted in a significant increase in impedance amplitude from 3.5 to 8.5 kΩ when compared to an only activated biochar-coated electrode. The developed immunosensor was able to detect E. coli O157:H7 cells with a limit of detection of 4 log CFU/mL without incubation. Successful binding of E. coli O157:H7 onto an activated biochar-based immunosensor was observed on the microelectrode surface in scanning electron microscopy (SEM) images.


Assuntos
Técnicas Biossensoriais , Escherichia coli O157 , Técnicas Biossensoriais/métodos , Biotina , Escherichia coli O157/isolamento & purificação , Microbiologia de Alimentos , Ouro , Imunoensaio/métodos , Microeletrodos , Vapor , Estreptavidina
15.
Adv Mater ; 33(20): e2007764, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33829545

RESUMO

Soil sensors and plant wearables play a critical role in smart and precision agriculture via monitoring real-time physical and chemical signals in the soil, such as temperature, moisture, pH, and pollutants and providing key information to optimize crop growth circumstances, fight against biotic and abiotic stresses, and enhance crop yields. Herein, the recent advances of the important soil sensors in agricultural applications, including temperature sensors, moisture sensors, organic matter compounds sensors, pH sensors, insect/pest sensors, and soil pollutant sensors are reviewed. Major sensing technologies, designs, performance, and pros and cons of each sensor category are highlighted. Emerging technologies such as plant wearables and wireless sensor networks are also discussed in terms of their applications in precision agriculture. The research directions and challenges of soil sensors and intelligent agriculture are finally presented.


Assuntos
Solo , Agricultura , Tecnologia sem Fio
16.
Soft Robot ; 8(2): 175-185, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32677860

RESUMO

Soft grippers and actuators have attracted increasing attention due to safer and more adaptable human-machine and environment-machine interactions than their rigid counterparts. In this study we present a novel soft humanoid hand that is capable of robustly grasping a variety of objects with different weights, sizes, shapes, textures, and stiffnesses. The soft hand fingers are made of flexible hybrid pneumatic actuators (FHPAs) designed based on a modular approach. A theoretical model is proposed to evaluate the bending deformation, grasping force, and loading capacity of the FHPAs, and the effects of various design parameters on the performance of the FHPA are investigated for optimizing the soft hands. This new FHPA achieves a balance of required flexibility and necessary stiffness, and the resulting soft humanoid hand has the merits of fast response, large grasping force, low cost, light weight, and ease of fabrication and repair, which shows promise for a variety of applications such as fruit picking, product packaging, and manipulation of fragile objects.


Assuntos
Robótica , Desenho de Equipamento , Mãos , Força da Mão , Humanos , Fenômenos Mecânicos , Robótica/métodos
17.
ACS Appl Mater Interfaces ; 12(16): 18987-18996, 2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32223254

RESUMO

Paper-based packaging is widely employed in industries ranging from food to beverages to pharmaceuticals because of its attractive advantages of biodegradability, recyclability, good strength, low cost, and lightweight. However, paper products usually have poor water barrier resistance properties because of paper and fibers porous microstructure. In this study, an ecofriendly water-resistant (hydrophobic) oil from biological origin, namely, palm kernel oil (PKO) was used to coat paper by using a facile and cost-effective dip-casting approach. PKO formulation was prepared by mixing with a solvent and furfuryl alcohol (FA). The water resistance, structural properties, and thermal and mechanical properties of the coated papers obtained under different processing conditions were reported and compared to understand the performance of coated paper. Contact angle (CA), Fourier transform infrared (FTIR), and thermal gravimetry (TGA) were used for analysis and characterization of coated papers. Data from contact angle measurements showed that the PKO formulation could considerably improve the liquid water barrier property of the paper, with a measured water contact angle (CA) of ∼120° and reduce the water vapor transmission rate (WVTR) by 22%. This novel, green, low-cost, and water-resistant paper coating made with biological and biodegradable oil is a potential candidate for replacing petroleum-based coatings used in a broad range of applications and will also be able to make an additional full use of the palm kernel oil.


Assuntos
Embalagem de Alimentos/métodos , Interações Hidrofóbicas e Hidrofílicas , Óleo de Palmeira/química , Papel , Furanos , Teste de Materiais , Água/química
18.
J Food Sci ; 85(3): 517-525, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32056210

RESUMO

Food supply chain is a rapidly growing integrated sector and covers all the aspects from farm to fork, including manufacturing, packaging, distribution, storing, as well as further processing or cooking for consumption. Along this chain, smart packaging could impact the quality, safety, and sustainability of food. Packaging systems have evolved to be smarter with integration of emerging electronics and wireless communication and cloud data solutions. Although there are many factors causing the loss and waste issues for foods throughout the whole supply chain of food and there have been several articles showing the recent advances and breakthroughs in developing smart packaging systems, this review integrates these conceptual frameworks and technological applications and focuses on how innovative smart packaging solutions are beneficial to the overall quality and safety of food supply by enhancing product traceability and reducing the amount of food loss and waste. We start by introducing the concept of the management for the integrated food supply chain, which is critical in tactical and operational components that can enhance product traceability within the entire chain. Then we highlight the impact of smart packaging in reducing food loss and waste. We summarize the basic information of the common printing techniques for smart packaging system (sensor and indicator). Then, we discuss the potential challenges in the manufacturing and deployment of smart packaging systems, as well as their cost-related drawbacks and further steps in food supply chain.


Assuntos
Embalagem de Alimentos/métodos , Abastecimento de Alimentos , Comércio , Eletrônica , Embalagem de Alimentos/economia , Embalagem de Alimentos/instrumentação , Abastecimento de Alimentos/economia
19.
ACS Nano ; 14(3): 3576-3586, 2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32049485

RESUMO

The development of stretchable electronics requires the invention of compatible high-performance power sources, such as stretchable supercapacitors and batteries. In this work, two-dimensional (2D) titanium carbide (Ti3C2Tx) MXene is being explored for flexible and printed energy storage devices by fabrication of a robust, stretchable high-performance supercapacitor with reduced graphene oxide (RGO) to create a composite electrode. The Ti3C2Tx/RGO composite electrode combines the superior electrochemical and mechanical properties of Ti3C2Tx and the mechanical robustness of RGO resulting from strong nanosheet interactions, larger nanoflake size, and mechanical flexibility. It is found that the Ti3C2Tx/RGO composite electrodes with 50 wt % RGO incorporated prove to mitigate cracks generated under large strains. The composite electrodes exhibit a large capacitance of 49 mF/cm2 (∼490 F/cm3 and ∼140 F/g) and good electrochemical and mechanical stability when subjected to cyclic uniaxial (300%) or biaxial (200% × 200%) strains. The as-assembled symmetric supercapacitor demonstrates a specific capacitance of 18.6 mF/cm2 (∼90 F/cm3 and ∼29 F/g) and a stretchability of up to 300%. The developed approach offers an alternative strategy to fabricate stretchable MXene-based energy storage devices and can be extended to other members of the large MXene family.

20.
Adv Sci (Weinh) ; 6(6): 1801653, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30937260

RESUMO

Printing techniques for the fabrication of diodes have received increasing attention over the last decade due to their great potential as alternatives for high-throughput and cost-effective manufacturing approaches compatible with both flexible and rigid substrates. Here, the progress achieved and the challenges faced in the fabrication of printed diodes are discussed and highlighted, with a focus on the materials of significance (silicon, metal oxides, nanomaterials, and organics), the techniques utilized for ink deposition (gravure printing, screen printing, inkjet printing, aerosol jet printing, etc.), and the process through which the printed layers of diode are sintered after printing. Special attention is also given to the device applications within which the printed diodes have been successfully incorporated, particularly in the fields of rectification, light emission, energy harvesting, and displays. Considering the unmatched production scalability of printed diodes and their intrinsic suitability for flexible and wearable applications, significant improvement in performance and intensive research in development and applications of the printed diodes will continuously progress in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA