Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Yi Chuan ; 43(5): 397-424, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-33972213

RESUMO

Cytogenetics was established based on the "Chromosome theory of inheritance", proposed by Boveri and Sutton and evidenced by Morgan's lab in early stage of the 20 th centrary. With rapid development of related research areas, especially molecular genetics, cytogenetics developed from traditional into a new era, molecular cytogenetics in late 1960s. Featured by an established technique named DNA in situ hybridization (ISH), molecular cytogenetics has been applied in various research areas. ISH provids vivid and straightforward figures showing the virtual presence of DNA, RNA or proteins. In combination with genomics and cell biology tools, ISH and derived techniques have been widely used in studies of the origin, evolution, domestication of human, animal and plant, as well as wide hybridization and chromosome engineering. The physical location and order of DNA sequences revealed by ISH enables the detection of chromosomal re-arrangments among related species and gaps of assembled genome sequences. In addition, ISH using RNA or protein probes can reveal the location and quantification of transcripted RNA or translated protein. Since the 1970s, scientists from universities or institutes belonging to the Jiangsu Society of Genetics have initiated cytogenetics researches using various plant species. In recent years, research platforms for molecular cytogenetics have also been well established in Nanjing Agricultural University, Yangzhou University, Nanjing Forestry University, Jiangsu Xuhuai Academy of Agricultural Sciences, and Jiangsu Normal University. The application of molecular cytogenetics in plant evolution, wide hybridization, chromosome engineering, chromosome biology, genomics has been successful. Significant progresses have been achieved, both in basic and applied researches. In this paper, we will review main research progresses of plant cytogenetics in Jiangsu province, and discuss the potential development of this research area.


Assuntos
Genômica , Plantas , Animais , Análise Citogenética , Citogenética , Humanos , Hibridização In Situ
2.
Yi Chuan ; 32(2): 177-82, 2010 Feb.
Artigo em Zh | MEDLINE | ID: mdl-20176563

RESUMO

In order to understand the chromosome structure of sweet potato (Ipomoea batatas cv. Xushu 18), molecular cytogenetic analyses were carried out on I. batatas. by using 45S rDNA fluorescence in situ hybridization (45S rDNA-FISH), self genomic in situ hybridization (self-GISH), and silver staining techniques. Twelve, sixteen, and eighteen regions were silver stained in the interphase nucleus of I. batatas. The results of FISH analysis demonstrated 16 or 18 signals with different intensity on chromosomes of I. batatas. Self-GISH analysis showed that the intensive signals on I. batatas mitotic chromosomes were distributed along the chromosomes. However, the signals located in centromeric, subcentromeric, and telomeric regions were stronger and denser than those in other regions.


Assuntos
Cromossomos de Plantas/genética , Ipomoea batatas/genética , DNA Ribossômico/genética , Hibridização in Situ Fluorescente
3.
J Plant Physiol ; 255: 153276, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33059125

RESUMO

Wild relatives of crops are often rich in genetic resources and provide great possibilities for crop improvement. Ipomoea pes-caprae is one of the wild relatives of sweet potato and has high salt tolerance. Transcriptomes in the treatment and control groups at various times were sequenced to identify salt tolerance genes and salt response pathways. A total of 40,525 genes were obtained, of which 2478 and 3334 were differentially expressed in the roots and leaves of I. pes-caprae under salt stress, respectively. Identification of candidate genes revealed that the mitogen-activated protein kinase (MAPK) signaling pathway of plants and plant hormone signal transduction participates in the salt signal of I. pes-caprae under salt stress. Homology to ABI2 (HAB2) and Clade A protein phosphatases type 2C (HAI1), which encode two protein phosphatases 2C (PP2C) in the abscisic acid (ABA) signal pathway, were continuously up-regulated upon salt stress, indicating their key role in the salt signal transduction pathway of I. pes-caprae. The expression of EIN3-binding F-box protein 1 (EBF1) in the ethylene signaling pathway was also up-regulated, revealing that the salt tolerance of I. pes-caprae was related to the scavenging of reactive oxygen species (ROS). This study provides insights into the mechanism of salt-tolerant plants and the mining of salt-tolerant genes in sweet potato for the innovation of germplasm resources.


Assuntos
Sequência de Bases , Ipomoea/genética , Ipomoea/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Salino/genética , Tolerância ao Sal/genética , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Regulação da Expressão Gênica de Plantas , Folhas de Planta/genética , Folhas de Planta/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Estresse Salino/fisiologia , Plantas Tolerantes a Sal/genética , Plantas Tolerantes a Sal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA