Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Med Virol ; 95(1): e28246, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36271490

RESUMO

SARS-CoV-2 NSP12, the viral RNA-dependent RNA polymerase (RdRp), is required for viral replication and is a therapeutic target to treat COVID-19. To facilitate research on SARS-CoV-2 NSP12 protein, we developed a rat monoclonal antibody (CM12.1) against the NSP12 N-terminus that can facilitate functional studies. Immunoblotting and immunofluorescence assay (IFA) confirmed the specific detection of NSP12 protein by this antibody for cells overexpressing the protein. Although NSP12 is generated from the ORF1ab polyprotein, IFA of human autopsy COVID-19 lung samples revealed NSP12 expression in only a small fraction of lung cells including goblet, club-like, vascular endothelial cells, and a range of immune cells, despite wide-spread tissue expression of spike protein antigen. Similar studies using in vitro infection also generated scant protein detection in cells with established virus replication. These results suggest that NSP12 may have diminished steady-state expression or extensive posttranslation modifications that limit antibody reactivity during SARS-CoV-2 replication.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Animais , Ratos , SARS-CoV-2/metabolismo , Anticorpos Monoclonais , Células Endoteliais , RNA Polimerase Dependente de RNA/genética , Antivirais/metabolismo
2.
PLoS One ; 18(3): e0282914, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36897840

RESUMO

OBJECTIVE: Cyclin-dependent kinase 1 (CDK1)/cyclin B1 phosphorylates many of the same substrates as mTORC1 (a key regulator of glucose metabolism), including the eukaryotic initiation factor 4E-binding protein 1 (4E-BP1). Only mitotic CDK1 phosphorylates 4E-BP1 at residue S82 in mice (S83 in humans), in addition to the common 4E-BP1 phospho-acceptor sites phosphorylated by both CDK1 and mTORC1. We examined glucose metabolism in mice having a single aspartate phosphomimetic amino acid knock in substitution at the 4E-BP1 serine 82 (4E-BP1S82D) mimicking constitutive CDK1 phosphorylation. METHODS: Knock-in homozygous 4E-BP1S82D and 4E-BP1S82A C57Bl/6N mice were assessed for glucose tolerance testing (GTT) and metabolic cage analysis on regular and on high-fat chow diets. Gastrocnemius tissues from 4E-BP1S82D and WT mice were subject to Reverse Phase Protein Array analysis. Since the bone marrow is one of the few tissues typically having cycling cells that transit mitosis, reciprocal bone-marrow transplants were performed between male 4E-BP1S82D and WT mice, followed by metabolic assessment, to determine the role of actively cycling cells on glucose homeostasis. RESULTS: Homozygous knock-in 4E-BP1S82D mice showed glucose intolerance that was markedly accentuated with a diabetogenic high-fat diet (p = 0.004). In contrast, homozygous mice with the unphosphorylatable alanine substitution (4E-BP1S82A) had normal glucose tolerance. Protein profiling of lean muscle tissues, largely arrested in G0, did not show protein expression or signaling changes that could account for these results. Reciprocal bone-marrow transplantation between 4E-BP1S82D and wild-type littermates revealed a trend for wild-type mice with 4E-BP1S82D marrow engraftment on high-fat diets to become hyperglycemic after glucose challenge. CONCLUSIONS: 4E-BP1S82D is a single amino acid substitution that induces glucose intolerance in mice. These findings indicate that glucose metabolism may be regulated by CDK1 4E-BP1 phosphorylation independent from mTOR and point towards an unexpected role for cycling cells that transit mitosis in diabetic glucose control.


Assuntos
Proteína Quinase CDC2 , Intolerância à Glucose , Humanos , Camundongos , Masculino , Animais , Proteína Quinase CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Fosfoproteínas/metabolismo , Fosforilação , Sinapsinas/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Mutação , Glucose
3.
J Invest Dermatol ; 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38036289

RESUMO

Cutaneous T-cell lymphomas are a heterogeneous group of neoplasms originating in the skin, with mycosis fungoides (MF) and Sézary syndrome (SS) representing the most common variants. The cellular origin of cutaneous lymphomas has remained controversial owing to their immense phenotypic heterogeneity that obfuscates lineage reconstruction on the basis of classical surface biomarkers. To overcome this heterogeneity and reconstruct the differentiation trajectory of malignant cells in MF and SS, TCR sequencing was performed in parallel with targeted transcriptomics at the single-cell resolution among cutaneous samples in MF and SS. Unsupervised lineage reconstruction showed that Sézary cells exist as a population of CD4+ T cells distinct from those in patch, plaque, and tumor MF. Further investigation of malignant cell heterogeneity in SS showed that Sézary cells phenotypically comprised at least 3 subsets on the basis of differential proliferation potentials and expression of exhaustion markers. A T helper 1-polarized cell type, intermediate cell type, and exhausted T helper 2-polarized cell type were identified, with T helper 1- and T helper 2-polarized cells displaying divergent proliferation potentials. Collectively, these findings provide evidence to clarify the relationship between MF and SS and reveal cell subsets in SS that suggest a possible mechanism for therapeutic resistance.

4.
mBio ; 11(6)2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33323517

RESUMO

Viral noncoding RNAs have acquired increasing prominence as important regulators of infection and mediators of pathogenesis. Circular RNAs (circRNAs) generated by backsplicing events have been identified in several oncogenic human DNA viruses. Here, we show that Merkel cell polyomavirus (MCV), the etiologic cause of ∼80% of Merkel cell carcinomas (MCCs), also expresses circular RNAs. By RNase R-resistant RNA sequencing, four putative circRNA backsplice junctions (BSJs) were identified from the MCV early region (ER). The most abundantly expressed MCV circRNA, designated circMCV-T, is generated through backsplicing of all of ER exon II to form a 762-nucleotide (nt) circular RNA molecule. Curiously, circMCV-T, as well as two other less abundantly expressed putative MCV circRNAs, overlaps in a complementary fashion with the MCV microRNA (miRNA) locus that encodes MCV-miR-M1. circMCV-T is consistently detected in concert with linear T antigen transcripts throughout infection, suggesting a crucial role for this RNA molecule in the regulatory functions of the early region, known to be vital for viral replication. Knocking out the hairpin structure of MCV-miR-M1 in genomic early region expression constructs and using a new high-efficiency, recombinase-mediated, recircularized MCV molecular clone demonstrates that circMCV-T levels decrease in the presence of MCV-miR-M1, underscoring the interplay between MCV circRNA and miRNA. Furthermore, circMCV-T partially reverses the known inhibitory effect of MCV-miR-M1 on early gene expression. RNase R-resistant RNA sequencing of lytic rat polyomavirus 2 (RatPyV2) identified an analogously located circRNA, stipulating a crucial, conserved regulatory function of this class of RNA molecules in the family of polyomaviruses.IMPORTANCE Covalently closed circular RNAs were recently described in the human DNA tumor viruses Epstein-Barr virus (EBV), Kaposi's sarcoma-associated herpesvirus (KSHV), and human papillomavirus (HPV). Here, we show that MCV, another DNA tumor virus, generates circRNAs from its early regulatory region in concert with T antigen linear transcripts. MCV circMCV-T interacts with another MCV noncoding RNA, miR-M1, to functionally modulate early region transcript expression important for viral replication and long-term episomal persistence. This work describes a dynamic regulatory network integrating circRNA/miRNA/mRNA biomolecules and underscores the intricate functional modulation between several classes of polyomavirus-encoded RNAs in the control of viral replication.


Assuntos
Carcinoma de Célula de Merkel/virologia , Regulação Viral da Expressão Gênica , Poliomavírus das Células de Merkel/genética , MicroRNAs/genética , RNA Circular/genética , RNA Viral/genética , Antígenos Virais de Tumores/genética , Antígenos Virais de Tumores/metabolismo , Humanos , Poliomavírus das Células de Merkel/metabolismo , MicroRNAs/metabolismo , RNA Circular/metabolismo , RNA Viral/metabolismo , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA