Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Mikrochim Acta ; 191(9): 510, 2024 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103665

RESUMO

Cocaine is one of the most abused illicit drugs, and its abuse damages the central nervous system and can even lead directly to death. Therefore, the development of simple, rapid and highly sensitive detection methods is crucial for the prevention and control of drug abuse, traffic accidents and crime. In this work, an electrochemical aptamer-based (EAB) sensor based on the low-temperature enhancement effect was developed for the direct determination of cocaine in bio-samples. The signal gain of the sensor at 10 °C was greatly improved compared to room temperature, owing to the improved affinity between the aptamer and the target. Additionally, the electroactive area of the gold electrode used to fabricate the EAB sensor was increased 20 times by a simple electrochemical roughening method. The porous electrode possesses more efficient electron transfer and better antifouling properties after roughening. These improvements enabled the sensor to achieve rapid detection of cocaine in complex bio-samples. The low detection limits (LOD) of cocaine in undiluted urine, 50% serum and 50% saliva were 70 nM, 30 nM and 10 nM, respectively, which are below the concentration threshold in drugged driving screening. The aptasensor was simple to construct and reusable, which offers potential for drugged driving screening in the real world.


Assuntos
Aptâmeros de Nucleotídeos , Cocaína , Técnicas Eletroquímicas , Ouro , Limite de Detecção , Detecção do Abuso de Substâncias , Cocaína/urina , Cocaína/análise , Cocaína/sangue , Aptâmeros de Nucleotídeos/química , Humanos , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Ouro/química , Detecção do Abuso de Substâncias/métodos , Técnicas Biossensoriais/métodos , Saliva/química , Eletrodos , Condução de Veículo , Temperatura Baixa
2.
Biosens Bioelectron ; 264: 116642, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39126905

RESUMO

Real-time, high-frequency measurements of pharmaceuticals, metabolites, exogenous antigens, and other biomolecules in biological samples can provide critical information for health management and clinical diagnosis. Electrochemical aptamer-based (EAB) sensor is a promising analytical technique capable of achieving these goals. However, the issues of insufficient sensitivity, frequent calibration and lack of adapted portable electrochemical device limit its practical application in immediate detection. In response we have fabricated an on-chip-integrated, cold-hot Janus EAB (J-EAB) sensor based on the thermoelectric coolers (TECs). Attributed to the Peltier effect, the enhanced/suppressed current response can be generated simultaneously on cold/hot sides of the J-EAB sensor. The ratio of the current responses on the cold and hot sides was used as the detection signal, enabling rapid on-site, calibration-free determination of small molecules (procaine) as well as macromolecules (SARS-CoV-2 spike protein) in single step, with detection limits of 1 µM and 10 nM, respectively. We have further demonstrated that the J-EAB sensor is effective in improving the ease and usability of the actual detection process, and is expected to provide a universal, low-cost, fast and easy potential analytical tool for other clinically important biomarkers, drugs or pharmaceutical small molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA