RESUMO
PURPOSE: We investigated whether caffeine consumption can enhance peak oxygen uptake ([Formula: see text]) by increasing peak ventilation during an incremental cycling test, and subsequently enhance time to exhaustion (TTE) during high-intensity cycling exercise in moderate normobaric hypoxia. METHODS: We conducted a double-blind, placebo cross-over design study. Sixteen recreational male endurance athletes (age: 20 ± 2 years, [Formula: see text]: 55.6 ± 3.6 ml/kg/min, peak power output: 318 ± 40 W) underwent an incremental cycling test and a TTE test at 80% [Formula: see text] (derived from the placebo trial) in moderate normobaric hypoxia (fraction of inspired O2: 15.3 ± 0.2% corresponding to a simulated altitude of ~ 2500 m) after consuming either a moderate dose of caffeine (6 mg/kg) or a placebo. RESULTS: Caffeine consumption resulted in a higher peak ventilation [159 ± 21 vs. 150 ± 26 L/min; P < 0.05; effect size (ES) = 0.31]. [Formula: see text] (3.58 ± 0.44 vs. 3.47 ± 0.47 L/min; P < 0.01; ES = 0.44) and peak power output (308 ± 44 vs. 302 ± 44 W; P = 0.02, ES = 0.14) were higher following caffeine consumption than during the placebo trial. During the TTE test, caffeine consumption enhanced minute ventilation (P = 0.02; ES = 0.28) and extended the TTE (426 ± 74 vs. 358 ± 75 s; P < 0.01, ES = 0.91) compared to the placebo trial. There was a positive correlation between the percent increase of [Formula: see text] following caffeine consumption and the percent increase in TTE (r = 0.49, P < 0.05). CONCLUSION: Moderate caffeine consumption stimulates breathing and aerobic metabolism, resulting in improved performance during incremental and high-intensity endurance exercises in moderate normobaric hypoxia.
Assuntos
Cafeína , Resistência Física , Humanos , Masculino , Adolescente , Adulto Jovem , Adulto , Cafeína/farmacologia , Exercício Físico , Hipóxia , Oxigênio , Consumo de Oxigênio , Teste de EsforçoRESUMO
PURPOSE: With limited studies exploring the dose-response of caffeine consumption on repeated sprint ability in hypoxia, this study aimed to determine the optimal caffeine dose (low, moderate or high) during repeated sprints in hypoxia to exhaustion. METHODS: On separate visits, twelve active males randomly performed four experimental trials in normobaric hypoxia (inspired oxygen fraction: 16.5 ± 0.2%). Participants ingested placebo (PLA) or caffeine capsules (3, 6 or 9 mg/kg or LOW, MOD and HIGH, respectively) 1 h before exercise and then underwent a repeated cycling sprint test (10 s sprint/20 s active recovery) to exhaustion. Total sprint number and work done, peak and mean power output, blood lactate concentration, cardiorespiratory and perceptual responses were recorded. RESULTS: Total sprint number was greater in MOD and HIGH compared to PLA (20 ± 7 and 18 ± 8 vs. 13 ± 4; all P < 0.05), with MOD also higher than LOW (15 ± 6; P = 0.02). Total work done was greater in MOD (111 ± 40 kJ) and HIGH (100 ± 35 kJ) compared to LOW (83 ± 29 kJ) and PLA (76 ± 25 kJ) (all P < 0.05). However, there were no significant differences in total sprint number or total work done between MOD and HIGH (all P > 0.05). Blood lactate concentration was higher in both MOD and HIGH compared to PLA (all P < 0.05). However, peak and mean power outputs, fatigue index, and ratings of perceived exertion did not differ across different caffeine dosages (all P > 0.05). CONCLUSION: A moderate dose of caffeine (6 mg/kg) is the optimal amount for enhancing repeated cycling sprint ability when compared to low and high doses in moderate normobaric hypoxia.
RESUMO
The effect of different exercise intensities on the magnitude of post-exercise hypotension has not been rigorously clarified with respect to the metabolic thresholds that partition discrete exercise intensity domains (i.e., critical power and the gas exchange threshold (GET)). We hypothesized that the magnitude of post-exercise hypotension would be greater following isocaloric exercise performed above versus below critical power. Twelve non-hypertensive men completed a ramp incremental exercise test to determine maximal oxygen uptake and the GET, followed by five exhaustive constant load trials to determine critical power and W' (work available above critical power). Subsequently, criterion trials were performed at four discrete intensities matched for total work performed (i.e., isocaloric) to determine the impact of exercise intensity on post-exercise hypotension: 10% above critical power (10% > CP), 10% below critical power (10% < CP), 10% above GET (10% > GET) and 10% below GET (10% < GET). The post-exercise decrease (i.e., the minimum post-exercise values) in mean arterial (10% > CP: -12.7 ± 8.3 vs. 10% < CP: v3.5 ± 2.9 mmHg), diastolic (10% > CP: -9.6 ± 9.8 vs. 10% < CP: -1.4 ± 5.0 mmHg) and systolic (10% > CP: -23.8 ± 7.0 vs. 10% < CP: -9.9 ± 4.3 mmHg) blood pressures were greater following exercise performed 10% > CP compared to all other trials (all P < 0.01). No effects of exercise intensity on the magnitude of post-exercise hypotension were observed during exercise performed below critical power (all P > 0.05). Critical power represents a threshold above which the magnitude of post-exercise hypotension is greatly augmented. NEW FINDINGS: What is the central questions of this study? What is the influence of exercise intensity on the magnitude of post-exercise hypotension with respect to metabolic thresholds? What is the main finding and its importance? The magnitude of post-exercise hypotension is greatly increased following exercise performed above critical power. However, below critical power, there was no clear effect of exercise intensity on the magnitude of post-exercise hypotension.
Assuntos
Hipotensão Pós-Exercício , Masculino , Humanos , Tolerância ao Exercício/fisiologia , Exercício Físico/fisiologia , Consumo de Oxigênio/fisiologia , Teste de Esforço/métodosRESUMO
BACKGROUND: Caffeine, widely recognized as an ergogenic aid, has undergone extensive research, demonstrating its effectiveness to enhance endurance performance. However, there remains a significant gap in systematically evaluating its effects on time trial (TT) performance in cyclists. PURPOSE: This meta-analysis aimed to determine the efficacy of caffeine ingestion to increase cycling TT performance in cyclists and to evaluate the optimal dosage range for maximum effect. METHODS: A search of four databases was completed on 1 December 2023. The selected studies comprised crossover, placebo-controlled investigations into the effects of caffeine ingestion on cycling TT performance. Completion time (Time) and mean power output (MPO) were used as performance measures for TT. Meta-analyses were performed using a random-effects model to assess the standardized mean differences (SMD) in individual studies. RESULTS: Fifteen studies met the inclusion criteria for the meta-analyses. Subgroup analysis showed that moderate doses of caffeine intake (4-6 mg/kg) significantly improved cycling performance (SMD Time = -0.55, 95% confidence interval (CI) = -0.84 ~ -0.26, p < 0.01, I2 = 35%; SMD MPO = 0.44, 95% CI = 0.09 ~ 0.79, p < 0.05, I2 = 39%), while the effects of low doses (1-3 mg/kg) of caffeine were not significant (SMD Time = -0.34, 95% CI = -0.84 ~ 0.17, p = 0.19, I2 = 0%; SMD MPO = 0.31, 95% CI = -0.02 ~ 0.65, p = 0.07, I2 = 0%). CONCLUSION: A moderate dosage (4-6 mg/kg) of caffeine, identified as the optimal dose range, can significantly improve the time trial performance of cyclists, while a low dose (1-3 mg/kg) does not yield improvement. In addition, the improvements in completion time and mean power output resulting from a moderate dose of caffeine are essentially the same in cycling time trails.
Assuntos
Desempenho Atlético , Ciclismo , Cafeína , Substâncias para Melhoria do Desempenho , Cafeína/administração & dosagem , Cafeína/farmacologia , Ciclismo/fisiologia , Humanos , Desempenho Atlético/fisiologia , Substâncias para Melhoria do Desempenho/administração & dosagem , Substâncias para Melhoria do Desempenho/farmacologia , Relação Dose-Resposta a Droga , Resistência Física/efeitos dos fármacosRESUMO
Purpose: We investigated whether varying the number of repetitions of high-intensity exercise during work-matched warm-ups modulates physiological responses (heart rate, metabolic responses, and core temperature), perceptions (ratings of perceived exertion, effort of breathing), readiness for exercise, and short-term exercise performance. Methods: Ten physically active young males performed a 30-s Wingate anaerobic test (WAnT) following a warm-up consisting of submaximal constant-workload cycling at 60% maximal oxygen uptake with no high-intensity cycling (constant-workload warm-up) or with 1, 4, or 7 repetitions of 10 s of high-intensity cycling at 110% maximal oxygen uptake. All warm-ups were matched for duration (10 min) and total work. Results: Warm-ups with seven repetitions of high-intensity cycling resulted in higher ratings of perceived whole-body exertion and effort of breathing than the constant-workload warm-up. Warm-up with four repetitions of high-intensity cycling produced greater readiness for a 30-s WAnT (7.33 ± 0.73 AU) than the constant-workload warm-up (6.33 ± 0.98 AU) (P = .022). Physiological responses did not differ among the four warm-up conditions, though peak heart rate was slightly higher (~5 beats/min) during warm-up with four or seven repetitions of high-intensity cycling than during the constant-workload warm-up. Peak, mean, and minimum power output during the 30-s WAnT did not differ among the four warm-up conditions. Conclusions: These results suggest that the effects of warm-ups with intermittent high-intensity exercise on physiological responses and short-term high-intensity exercise performance do not greatly differ from a warm-up with a work-matched submaximal constant-workload. However, they appear to modulate perceptions and readiness as a function of the number of repetitions of the high-intensity exercise.
Assuntos
Desempenho Atlético , Exercício de Aquecimento , Masculino , Humanos , Desempenho Atlético/fisiologia , Exercício Físico/fisiologia , Frequência Cardíaca/fisiologia , Teste de Esforço , Oxigênio , Consumo de OxigênioRESUMO
It is well known that uncompensable heat stress greatly impairs endurance and team sport-related performance because an increase in the core temperature directly induces a greater magnitude of the central fatigue in the heat than in thermal neutral environments. Numerous studies have been conducted in an attempt to discover reliable cooling strategies for improving endurance performance and repeated sprint ability while exercising in the heat. Whole-body pre-cooling has been shown to improve endurance performance in both dry and humid heat. Despite this, the reduction in thermal perceptions associated with pre-cooling gradually narrows during intense exercise. Hence, effective per-cooling strategies to improve athletic performance in the heat are required. Unfortunately, due to practical issues, adopting pre-cooling approaches as a per-cooling (cooling during exercise) modality to improve athletic performance is impractical. Thus, we sought to examine the impact of head, neck and face cooling on athletic performance in heat. According to current evidence, cooling the head, neck and face reduced local skin temperature in the areas where cooling was applied, resulting in improved local perceptual sensations. In the heat, neck cooling during exercise improves athletic performance in both endurance and team sports athletes. Furthermore, from a practical standpoint, neck cooling is preferred over head, face and combined head/face and neck cooling for both endurance and team sport athletes in the heat. Nonetheless, for all athletes who have access to water, face cooling is a recommended cooling strategy. There is a lack of research on the systematic selection of per-cooling modalities to improve athletic performance based on environmental conditions and the nature of sports. In addition, powerful but portable head, neck and face cooling systems are urgently needed to assist athletes in improving their performance in hot conditions.
RESUMO
Cao, Yinhang, Naoto Fujii, Tomomi Fujimoto, Yin-Feng Lai, Takeshi Ogawa, Tsutomu Hiroyama, Yasushi Enomoto, and Takeshi Nishiyasu. CO2-enriched air inhalation modulates the ventilatory and metabolic responses of endurance runners during incremental running in hypobaric hypoxia. High Alt Med Biol. 23:125-134, 2022. Aim: We measured the effects of breathing CO2-enriched air on ventilatory and metabolic responses during incremental running exercise under moderately hypobairc hypoxic (HH) conditions. Materials and Methods: Ten young male endurance runners [61.4 ± 6.0 ml/(min·kg)] performed incremental running tests under three conditions: (1) normobaric normoxia (NN), (2) HH (2,500 m), and (3) HH with 5% CO2 inhalation (HH+CO2). The test under NN was always performed first, and then, the two remaining tests were completed in random and counterbalanced order. Results: End-tidal CO2 partial pressure (55 ± 3 vs. 35 ± 1 mmHg), peak ventilation (163 ± 14 vs. 152 ± 12 l/min), and peak oxygen uptake [52.3 ± 5.5 vs. 50.5 ± 4.9 ml/(min·kg)] were all higher in the HH+CO2 than HH trial (all p < 0.01), respectively. However, the duration of the incremental test did not differ between HH+CO2 and HH trials. Conclusion: These data suggest that chemoreflex activation by breathing CO2-enriched air stimulates breathing and aerobic metabolism during maximal intensity exercise without affecting exercise performance in male endurance runners under a moderately hypobaric hypoxic environment.
Assuntos
Dióxido de Carbono , Corrida , Humanos , Hipóxia/metabolismo , Pulmão/metabolismo , Masculino , Oxigênio , Pressão ParcialRESUMO
Physical activity could improve the muscle fitness of youth, but the systematic analysis of physical activity elements and muscle fitness was limited. This systematic review and meta-analysis aim to explore the influence of physical activity elements on muscle fitness in children and adolescents. We analyzed literature in Embase, EBSCO, Web of Science, and PubMed databases from January 2000 to September 2020. Only randomized controlled studies with an active control group, which examined at least 1 muscle fitness evaluation index in individuals aged 5-18 years were included. Articles were evaluated using the Jaded scale. Weighted-mean standardized mean differences (SMDs) were calculated using random-effects models. Twenty-one studies and 2267 subjects were included. Physical activity had moderate effects on improving muscle fitness (SMD: 0.58-0.96, p < 0.05). Physical activity element subgroup analysis showed that high-intensity (SMD 0.68-0.99, p < 0.05) physical activity <3 times/week (SMD 0.68-0.99, p < 0.05), and <60 min/session (SMD 0.66-0.76, p < 0.01) effectively improved muscle fitness. Resistance training of ≥3 sets/session (SMD 0.93-2.90, p < 0.01) and <10 repetitions/set (SMD 0.93-1.29, p < 0.05) significantly improved muscle fitness. Low-frequency, high-intensity, and short-duration physical activity more effectively improves muscle fitness in children and adolescents. The major limitation of this meta-analysis was the low quality of included studies. The study was registered in PROSPERO with the registration number CRD42020206963 and was funded mainly by the Ministry of Education of Humanities and Social Science project, China.
Assuntos
Exercício Físico , Treinamento Resistido , Adolescente , Criança , Ciências Humanas , Humanos , Músculo Esquelético , Ensaios Clínicos Controlados Aleatórios como AssuntoRESUMO
Thermal sensation, a key component of behavioral thermoregulation, is modulated by the changes in both skin and core temperatures. Although cutaneous thermal sensation to local cold is blunted during exercise as compared to rest in normothermic humans, it remains to be determined whether this holds true during core cooling. Furthermore, when local skin thermal sensation is diminished during exercise, it remains unclear whether whole-body thermal sensation is also attenuated. We therefore tested whether low-intensity exercise (VO2: ~1300 ml min-1) attenuates local skin and/or whole-body thermal sensation in hypothermic young males. Eleven healthy young males (24 ± 2 years) were cooled through cold water immersion (18 °C) up to their lower abdomen while resting (rest trial) and during low-intensity cycling (30-60 W, 30 rpm) (exercise trial). Body temperature, cardiorespiratory variables, and whole-body (9-point scale: 0, unbearably cold; 4, neutral; 8, unbearably hot) and local skin thermal sensation were measured at baseline on land and before the esophageal temperature (Tes) began to decrease (defined as -0.0 Tes) and after 0.5 and 1.0 °C decrements in Tes from baseline during the immersion period. Local skin thermal sensation was measured using a thermostimulator with Peltier element that was attached to the chest. The temperature of the probe was initially equilibrated to the chest skin temperature, then gradually decreased at a constant rate (0.1 °C s -1) until the participants felt coolness. The difference between the initial skin temperature and the local skin temperature that felt cool was assessed as an index of local skin thermal sensation. Throughout the immersions, esophageal and mean skin temperatures did not differ between the rest and exercise trials. Local skin thermal sensation also did not differ between the two trials or at any core temperature level. By contrast, the whole-body thermal sensation score was higher (participants felt less cold) in the exercise than in the rest trial at esophageal temperature of -1.0 °C (1.25 ± 0.46 vs. 0.63 ± 0.35 units, P = 0.035). These results suggest that local skin thermal sensation during low-intensity exercise is not affected by a decrease in core temperature. However, whole-body thermal sensation mediated by a decrease in core temperature (-1.0 °C) is blunted by low-intensity exercise during cold water immersion.
Assuntos
Temperatura Cutânea , Sensação Térmica , Temperatura Corporal , Regulação da Temperatura Corporal , Temperatura Baixa , Exercício Físico , Temperatura Alta , Humanos , Imersão , MasculinoRESUMO
We tested whether expiratory flow limitation (EFL) occurs in endurance athletes in a moderately hypobaric hypoxic environment equivalent to 2500 m above sea level and, if so, whether EFL inhibits peak ventilation ( VË Epeak ), thereby exacerbating the hypoxia-induced reduction in peak oxygen uptake ( VË O2peak ). Seventeen young male endurance runners performed incremental exhaustive running on separate days under hypobaric hypoxic (560 mmHg) and normobaric normoxic (760 mmHg) conditions. Oxygen uptake ( VË O2 ), minute ventilation ( VË E), arterial O2 saturation (SpO2 ), and operating lung volume were measured throughout the incremental exercise. Among the runners tested, 35% exhibited EFL (EFL group, n = 6) in the hypobaric hypoxic condition, whereas the rest did not (Non-EFL group, n = 11). There were no differences between the EFL and Non-EFL groups for VË Epeak and VË O2peak under either condition. Percent changes in VË Epeak (4 ± 4 vs. 2 ± 4%) and VË O2peak (-18 ± 6 vs. -16 ± 6%) from normobaric normoxia to hypobaric hypoxia also did not differ between the EFL and Non-EFL groups (all P > 0.05). No differences in maximal running velocity, SpO2 , or operating lung volume were detected between the two groups under either condition. These results suggest that under the moderate hypobaric hypoxia (2500 m above sea level) frequently used for high-attitude training, ~35% of endurance athletes may exhibit EFL, but their ventilatory and metabolic responses during maximal exercise are similar to those who do not exhibit EFL.
Assuntos
Hipóxia/fisiopatologia , Pulmão/fisiopatologia , Contração Muscular , Músculo Esquelético/fisiopatologia , Condicionamento Físico Humano/métodos , Resistência Física , Ventilação Pulmonar , Corrida , Aclimatação , Altitude , Metabolismo Energético , Tolerância ao Exercício , Humanos , Hipóxia/metabolismo , Masculino , Fadiga Muscular , Músculo Esquelético/metabolismo , Consumo de Oxigênio , Fatores de Tempo , Adulto JovemRESUMO
Hyperthermia causes hyperventilation at rest and during exercise. We previously reported that carotid chemoreceptors partly contribute to the hyperthermia-induced hyperventilation at rest. However, given that a hyperthermia-induced hyperventilation markedly differs between rest and exercise, the results obtained at rest may not be representative of the response in exercise. Therefore, we evaluated whether carotid chemoreceptors contribute to hyperthermia-induced hyperventilation in exercising humans. Eleven healthy young men (23 ± 2 yr) cycled in the heat (37°C) at a fixed submaximal workload equal to ~55% of the individual's predetermined peak oxygen uptake (moderate intensity). To suppress carotid chemoreceptor activity, 30-s hyperoxia breathing (100% O2) was performed at rest (before exercise) and during exercise at increasing levels of hyperthermia as defined by an increase in esophageal temperature of 0.5°C (low), 1.0°C (moderate), 1.5°C (high), and 2.0°C (severe) above resting levels. Ventilation during exercise gradually increased as esophageal temperature increased (all P ≤ 0.05), indicating that hyperthermia-induced hyperventilation occurred. Hyperoxia breathing suppressed ventilation in a greater manner during exercise (-9 to -13 l/min) than at rest (-2 ± 1 l/min); however, the magnitude of reduction during exercise did not differ at low (0.5°C) to severe (2.0°C) increases in esophageal temperature (all P > 0.05). Similarly, hyperoxia-induced changes in ventilation during exercise as assessed by percent change from prehyperoxic levels were not different at all levels of hyperthermia (~15-20%, all P > 0.05). We show that in young men carotid chemoreceptor contribution to hyperthermia-induced hyperventilation is relatively small at low-to-severe increases in body core temperature induced by moderate-intensity exercise in the heat. NEW & NOTEWORTHY Exercise-induced increases in hyperthermia cause a progressive increase in ventilation in humans. However, the mechanisms underpinning this response remain unresolved. We showed that in young men hyperventilation associated with exercise-induced hyperthermia is not predominantly mediated by carotid chemoreceptors. This study provides important new insights into the mechanism(s) underpinning the regulation of hyperthermia-induced hyperventilation in humans and suggests that factor(s) other than carotid chemoreceptors play a more important role in mediating this response.