Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Int J Oncol ; 35(2): 393-400, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19578755

RESUMO

Altered expression of microRNAs (miRNAs) has been detected in cancer, suggesting that these small non-coding RNAs can act as oncogenes or tumor suppressor genes. In the present study, we investigated the expression of miRNA-17-5p, miRNA-18a, miRNA-20a, miRNA-92a, miRNA-146a, miRNA-146b and miRNA-155 by real-time quantitative RT-PCR in a panel of melanocyte cultures and melanoma cell lines and explored the possible role of miRNA-155 in melanoma cell proliferation and survival. The analyzed miRNAs were selected on the basis of previous studies strongly supporting their involvement in cancer development and/or progression. We found that miRNA-17-5p, miRNA-18a, miRNA-20a, and miRNA-92a were overexpressed, whereas miRNA-146a, miRNA-146b and miRNA-155 were down-regulated in the majority of melanoma cell lines with respect to melanocytes. Ectopic expression of miRNA-155 significantly inhibited proliferation in 12 of 13 melanoma cell lines with reduced levels of this miRNA and induced apoptosis in 4 out of 4 cell lines analyzed. In conclusion, our data further support the finding of altered miRNA expression in melanoma cells and establish for the first time that miRNA-155 is a negative regulator of melanoma cell proliferation and survival.


Assuntos
Melanoma/genética , Melanoma/patologia , MicroRNAs/genética , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Humanos , MicroRNAs/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
2.
DNA Repair (Amst) ; 6(8): 1179-86, 2007 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-17500047

RESUMO

Previous studies indicated that dacarbazine and Temozolomide could be highly effective against refractory acute leukaemia. Their activity relies mainly on the generation of methyl adducts at the O(6)-position of guanine in DNA. High levels of O(6)-methylguanine-DNA methyltransferase (MGMT) or a defective mismatch repair (MMR) system, are associated with cellular resistance to triazenes. The MGMT inhibitor, O(6)-(4-bromothenyl)guanine (Lomeguatrib), can restore in vitro sensitivity to Temozolomide in MMR-proficient blasts. In the early 1970s we discovered that, in vivo, triazene compounds induce the appearance of novel transplantation antigens in murine leukaemia ("Chemical Xenogenization", CX). Non-self peptides presented by class I MHC molecules are generated by triazene-induced somatic mutations, affecting retroviral sequences that are detectable in the mouse genome. Moreover, preliminary experiments suggested that human cancer cells can also undergo CX. Therefore, we designed a chemo-immunotherapy strategy in leukaemic patients as follows: (a) cytoreduction and a hypothetical CX phase, i.e. treatment with Lomeguatrib (to suppress MGMT activity) and Temozolomide (to kill sensitive blasts and to presumably induce CX in resistant leukaemic cells); (b) immune response recovery phase using interleukin-2 (to possibly restore an immune response and take advantage of the hypothetical, triazene-induced CX). Here we present the results of pilot study which is in progress in patients with refractory/relapsed acute leukaemia. In all tested cases, Lomeguatrib suppressed MGMT activity in vivo. Six out of eight patients showed partial or complete disappearance of blast cells in peripheral blood or in bone marrow. We observed severe and long-lasting myelosuppression, accompanied by limited non-haematological toxicity. Up to now, two patients are alive (after 9 and 10 months, respectively), four died of opportunistic infections and two of progressive disease. This investigation confirms the potential role of triazenes in leukaemia and highlights the contribution of Lomeguatrib in overcoming drug resistance. Further studies are required to establish whether Temozolomide can induce CX in human leukaemia, and thus offer a new approach to control minimal residual disease.


Assuntos
Dacarbazina/análogos & derivados , Interleucina-2/uso terapêutico , Leucemia/tratamento farmacológico , Leucemia/terapia , Purinas/uso terapêutico , Animais , Antineoplásicos Alquilantes/uso terapêutico , Terapia Combinada , Metilação de DNA , Metilases de Modificação do DNA/antagonistas & inibidores , Reparo do DNA , Enzimas Reparadoras do DNA/antagonistas & inibidores , Dacarbazina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Inibidores Enzimáticos/uso terapêutico , Humanos , Imunoterapia , Camundongos , O(6)-Metilguanina-DNA Metiltransferase/antagonistas & inibidores , Projetos Piloto , Temozolomida , Proteínas Supressoras de Tumor/antagonistas & inibidores
3.
Cancer Res ; 66(9): 4943-51, 2006 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-16651452

RESUMO

The use of IFN-alpha in clinical oncology has generally been based on the rationale of exploiting its antiproliferative and antiangiogenic activities. However, IFN-alpha also exhibits enhancing effects on T-cell and dendritic cell functions, which may suggest a novel use as a vaccine adjuvant. We have carried out a pilot phase I-II trial to determine the effects of IFN-alpha, administered as an adjuvant of Melan-A/MART-1:26-35(27L) and gp100:209-217(210M) peptides, on immune responses in stage IV melanoma patients. In five of the seven evaluable patients, a consistent enhancement of CD8(+) T cells recognizing modified and native MART-1 and gp100 peptides and MART-1(+)gp100(+) melanoma cells was observed. Moreover, vaccination induced an increase in CD8(+) T-cell binding to HLA tetramers containing the relevant peptides and an increased frequency of CD45RA(+)CCR7(-) (terminally differentiated effectors) and CD45RA(-)CCR7(-) (effector memory) cells. In all patients, treatment augmented significantly the percentage of CD14(+) monocytes and particularly of the CD14(+)CD16(+) cell fraction. An increased expression of CD40 and CD86 costimulatory molecules in monocytes was also observed. Notably, postvaccination monocytes from two of the three patients showing stable disease or long disease-free survival showed an enhanced antigen-presenting cell function and capability to secrete IP10/CXCL10 when tested in mixed leukocyte reaction assays, associated to a boost of antigen and melanoma-specific CD8(+) T cells. Although further clinical studies are needed to show the adjuvant activity of IFN-alpha, the present data represent an important starting point for considering a new clinical use of IFN-alpha and new immunologic end points, potentially predictive of clinical response.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/uso terapêutico , Células Dendríticas/imunologia , Interferon-alfa/uso terapêutico , Melanoma/terapia , Glicoproteínas de Membrana/imunologia , Proteínas de Neoplasias/imunologia , Adjuvantes Imunológicos/uso terapêutico , Apresentação de Antígeno , Antígenos de Neoplasias , Vacinas Anticâncer/imunologia , Células Dendríticas/citologia , Antígenos HLA-A/imunologia , Antígeno HLA-A2 , Humanos , Imunofenotipagem , Ativação Linfocitária , Antígeno MART-1 , Melanoma/imunologia , Melanoma/patologia , Monócitos/citologia , Monócitos/imunologia , Estadiamento de Neoplasias , Projetos Piloto , Antígeno gp100 de Melanoma
4.
Int J Oncol ; 30(2): 443-51, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17203227

RESUMO

Hyperthermic isolated limb perfusion (HILP) with L-phenylalanine mustard (L-PAM) represents an effective treatment for locally advanced melanoma of the limbs. However, regional chemotherapy of melanoma still needs to be improved. Temozolomide (TMZ) is a methylating agent that spontaneously decomposes into the active metabolite of dacarbazine, the most effective agent for the systemic treatment of melanoma. Tumor cells with high levels of O6-methylguanine-DNA methyltransferase (MGMT) and/or with a defective DNA mismatch repair (MMR) are resistant to TMZ. Inhibition of MGMT activity increases TMZ sensitivity of MMR-proficient, but not of MMR-deficient cells, while inhibition of base excision repair (BER) potentiates TMZ cytotoxicity in both cell types. Recent studies, performed in an animal model, have shown that TMZ is more effective than L-PAM when applied regionally and that hyperthermia can increase the antitumor activity of TMZ. In this study, three thermoresistant human melanoma cell lines, endowed with different MGMT activity and functional status of the MMR system, were treated with TMZ at 37 degrees C or 41.5 degrees C for 90 min, and then analyzed for cell growth and MGMT activity. Hyperthermia significantly enhanced TMZ cytotoxicity in MMR-proficient cells, either endowed or not with MGMT activity, and in MMR-deficient cells. Endogenous MGMT activity was not affected by hyperthermia that, however, enhanced the enzyme depletion induced by TMZ treatment. Moreover, MGMT recovery after drug removal was delayed in cells that had been treated at 41.5 degrees C. Taken together, these findings confirm the therapeutic potential of a combined treatment of hyperthermia and TMZ. They also suggest that inhibition of BER and/or increased DNA methylation may be involved in the thermal enhancement of TMZ cytotoxicity. Additional studies are necessary to better clarify the mechanisms underlying hyperthermia-induced potentiation of TMZ activity. However, the present investigation provides further support to the development of clinical trials of HILP with TMZ.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Dacarbazina/análogos & derivados , Febre , Melanoma/tratamento farmacológico , Melanoma/patologia , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologia , Pareamento Incorreto de Bases , Vacinas Anticâncer , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Metilação de DNA , Reparo do DNA , Dacarbazina/farmacologia , Relação Dose-Resposta a Droga , Humanos , Concentração Inibidora 50 , Melanoma/metabolismo , Neoplasias Cutâneas/metabolismo , Temozolomida
5.
Int J Oncol ; 29(4): 785-97, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16964376

RESUMO

Clinically achievable concentrations of temozolomide (TMZ) produce cytotoxic effects only in mismatch repair (MMR)-proficient cells endowed with low O6-methylguanine-DNA methyltransferase (MGMT) activity. Aim of the present study was to investigate the molecular mechanisms underlying acquired resistance of melanoma cells to TMZ and the effect of O6-benzylguanine (BG), a specific MGMT inhibitor, on the development of a TMZ-resistant phenotype. Three MMR-proficient melanoma cell clones with low or no MGMT activity were treated daily for 5 days with 50 micromol/l TMZ, alone or in combination with 5 micromol/l BG. Parental clones and sublines established after one or four cycles of treatment were analyzed for sensitivity to TMZ or TMZ+BG and for other parameters. The sublines established after one cycle of TMZ or TMZ+BG exhibited a marked increase in MGMT activity and resistance to TMZ alone. BG only partially reversed acquired resistance to the drug. In some cases, alterations in the MMR system accounted for MGMT-independent resistance to TMZ. Up-regulation of MGMT activity was associated with either demethylation of the MGMT promoter or hypermethylation of the body of the gene, and partially reversed by 5-aza-2'-deoxycytidine. The sublines established after four cycles of TMZ or TMZ+BG did not show a further increase in resistance to TMZ alone. However, two out of three sublines established after TMZ+BG treatment exhibited increased resistance to TMZ+BG. In conclusion, our data demonstrate that a single cycle of TMZ is sufficient to induce high levels of drug resistance in melanoma clones, principally, but not exclusively, via up-regulation of MGMT expression. Exposure to TMZ+BG favors the development of MGMT-independent mechanisms of TMZ resistance.


Assuntos
Antineoplásicos/farmacologia , Pareamento Incorreto de Bases/fisiologia , Dacarbazina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos , Inibidores Enzimáticos/farmacologia , Guanina/análogos & derivados , Melanoma/enzimologia , Melanoma/genética , O(6)-Metilguanina-DNA Metiltransferase/fisiologia , Metilação de DNA , Reparo do DNA , Dacarbazina/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Guanina/farmacologia , Humanos , O(6)-Metilguanina-DNA Metiltransferase/antagonistas & inibidores , O(6)-Metilguanina-DNA Metiltransferase/genética , Regiões Promotoras Genéticas , Temozolomida , Células Tumorais Cultivadas , Regulação para Cima
6.
Pigment Cell Melanoma Res ; 24(3): 538-50, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21466664

RESUMO

The SKI protein is a transcriptional coregulator over-expressed in melanoma. Experimentally induced down-regulation of SKI inhibits melanoma cell growth in vitro and in vivo. MicroRNAs (miRNAs) negatively modulate gene expression and have been implicated in oncogenesis. We previously showed that microRNA-155 (miR-155) is down-regulated in melanoma cells as compared with normal melanocytes and that its ectopic expression impairs proliferation and induces apoptosis. Here, we investigated whether miR-155 could mediate melanoma growth inhibition via SKI gene silencing. Luciferase reporter assays demonstrated that miR-155 interacted with SKI 3'UTR and impaired gene expression. Transfection of melanoma cells with miR-155 reduced SKI levels, while inhibition of endogenous miR-155 up-regulated SKI expression. Specifically designed small interfering RNAs reduced SKI expression and inhibited proliferation. However, melanoma cells over-expressing a 3'UTR-deleted SKI were still susceptible to the antiproliferative effect of miR-155. Our data demonstrate for the first time that SKI is a target of miR-155 in melanoma. However, impairment of SKI expression is not the leading mechanism involved in the growth-suppressive effect of miR-155 found in this malignancy.


Assuntos
Apoptose , Proliferação de Células , Proteínas de Ligação a DNA/biossíntese , Regulação Neoplásica da Expressão Gênica , MicroRNAs/biossíntese , Proteínas Proto-Oncogênicas/biossíntese , RNA Neoplásico/biossíntese , Regiões 3' não Traduzidas/genética , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Humanos , Melanoma , MicroRNAs/genética , Proteínas Proto-Oncogênicas/genética , RNA Neoplásico/genética
7.
Anticancer Res ; 30(11): 4721-30, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21115931

RESUMO

(51)Cr-prelabelled colon cancer cells (simulating 'circulating tumor cells', CTCs) were added to human peripheral blood and exposed to staurosporine (ST) to increase carcinoembryonic antigen (CEA) expression. CTCs were captured with immunomagnetic beads coated with Ber-EP4 monoclonal antibody, recognizing the common epithelial antigen present in the majority of cancer cells of epithelial origin, with capture efficiency of more than 80%. Moreover, ST treatment increased CEA expression without compromising Ber-EP4 capture efficiency. In a pilot clinical study on 37 patients, CTCs were captured using Ber-EP4 beads, and recognized by RT-PCR set for CEA or cytokeratin-19 (CK) mRNA detection. The results showed that: (a) the percentage of CEA-positive CTCs (CTC(CEA), 54.1%) was lower than that of CK-positive CTCs (CTC(CK), 70.3%); (b) in vitro ST treatment converted a significant number of CTC(CEA)-negative into CTC(CEA)-positive cases. Therefore, immunomagnetic capture combined with exposure to ST provides a feasible and sensitive technique for the detection of functionally-active CTCs responsive to ST-mediated CEA up-regulation.


Assuntos
Biomarcadores Tumorais/análise , Antígeno Carcinoembrionário/genética , Neoplasias do Colo/sangue , Queratina-19/genética , Células Neoplásicas Circulantes/patologia , Estaurosporina/farmacologia , Idoso , Idoso de 80 Anos ou mais , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Antimetabólitos Antineoplásicos/farmacologia , Antígeno Carcinoembrionário/metabolismo , Linhagem Celular Tumoral , Neoplasias do Colo/imunologia , Inibidores Enzimáticos/farmacologia , Feminino , Fluoruracila/farmacologia , Humanos , Immunoblotting , Separação Imunomagnética , Queratina-19/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Metástase Neoplásica , Células Neoplásicas Circulantes/efeitos dos fármacos , Células Neoplásicas Circulantes/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA