RESUMO
Four-wave mixing (FWM) processes, based on third-order nonlinear light-matter interactions, can combine ultrafast time resolution with energy and wavevector selectivity, and enable the exploration of dynamics inaccessible by linear methods. The coherent and multi-wave nature of the FWM approach has been crucial in the development of advanced technologies, such as silicon photonics, subwavelength imaging and quantum communications. All these technologies operate at optical wavelengths, which limits the spatial resolution and does not allow the probing of excitations with energy in the electronvolt range. Extension to shorter wavelengths--that is, the extreme ultraviolet and soft-X-ray ranges--would allow the spatial resolution to be improved and the excitation energy range to be expanded, as well as enabling elemental selectivity to be achieved by exploiting core resonances. So far, FWM applications at such wavelengths have been prevented by the absence of coherent sources of sufficient brightness and of suitable experimental set-ups. Here we show how transient gratings, generated by the interference of coherent extreme-ultraviolet pulses delivered by the FERMI free-electron laser, can be used to stimulate FWM processes at suboptical wavelengths. Furthermore, we have demonstrated the possibility of observing the time evolution of the FWM signal, which shows the dynamics of coherent excitations as molecular vibrations. This result opens the way to FWM with nanometre spatial resolution and elemental selectivity, which, for example, would enable the investigation of charge-transfer dynamics. The theoretical possibility of realizing these applications has already stimulated ongoing developments of free-electron lasers: our results show that FWM at suboptical wavelengths is feasible, and we hope that they will enable advances in present and future photon sources.
RESUMO
The characterization of the time structure of ultrafast photon pulses in the extreme-ultraviolet (EUV) and soft X-ray spectral ranges is of high relevance for a number of scientific applications and photon diagnostics. Such measurements can be performed following different strategies and often require large setups and rather high pulse energies. Here, high-quality measurements carried out by exploiting the transient grating process, i.e. a third-order non-linear process sensitive to the time-overlap between two crossed EUV pulses, is reported. From such measurements it is possible to obtain information on both the second-order intensity autocorrelation function and on the coherence length of the pulses. It was found that the pulse energy density needed to carry out such measurements on solid state samples can be as low as a few mJâ cm-2. Furthermore, the possibility to control the arrival time of the crossed pulses independently might permit the development of a number of coherent spectroscopies in the EUV and soft X-ray regime, such as, for example, photon echo and two-dimensional spectroscopy.
RESUMO
We hereby report on a set of transient optical reflectivity and transmissivity measurements performed on silicon nitride thin membranes excited by extreme ultraviolet (EUV) radiation from a free electron laser (FEL). Experimental data were acquired as a function of the membrane thickness, FEL fluence and probe polarization. The time dependence of the refractive index, retrieved using Jones matrix formalism, encodes the dynamics of electron and lattice excitation following the FEL interaction. The observed dynamics are interpreted in the framework of a two temperature model, which permits to extract the relevant time scales and magnitudes of the processes. We also found that in order to explain the experimental data thermo-optical effects and inter-band filling must be phenomenologically added to the model.
RESUMO
The extension of nonlinear optical techniques to the extreme-ultraviolet (EUV), soft and hard x-ray regime represents one of the open challenges of modern science since it would combine chemical specificity with background-free detection and ultrafast time resolution. We report on the first observation of a four-wave-mixing (FWM) response from solid-state samples stimulated exclusively by EUV pulses. The all-EUV FWM signal was generated by the diffraction of high-order harmonics of the FERMI free-electron laser (FEL) from the standing wave resulting from the interference of two crossed FEL pulses at the fundamental wavelength. From the intensity of the FWM signal, we are able to extract the first-ever estimate of an effective value of â¼6×10^{-24} m^{2} V^{-2} for the third-order nonlinear susceptibility in the EUV regime. This proof of principle experiment represents a significant advance in the field of nonlinear optics and sets the starting point for a manifold of techniques, including frequency and phase-resolved FWM methods, that are unprecedented in this photon-energy regime.
RESUMO
The development of free electron laser (FEL) sources has provided an unprecedented bridge between the scientific communities working with ultrafast lasers and extreme ultraviolet (XUV) and X-ray radiation. Indeed, in recent years an increasing number of FEL-based applications have exploited methods and concepts typical of advanced optical approaches. In this context, we recently used a seeded FEL to demonstrate a four-wave-mixing (FWM) process stimulated by coherent XUV radiation, namely the XUV transient grating (X-TG). We hereby report on X-TG measurements carried out on a sample of silicon nitride (Si3N4). The recorded data bears evidence for two distinct signal decay mechanisms: one occurring on a sub-ps timescale and one following slower dynamics extending throughout and beyond the probed timescale range (100 ps). The latter is compatible with a slower relaxation (time decay > ns), that may be interpreted as the signature of thermal diffusion modes. From the peak intensity of the X-TG signal we could estimate a value of the effective third-order susceptibility which is substantially larger than that found in SiO2, so far the only sample with available X-TG data. Furthermore, the intensity of the time-coincidence peak shows a linear dependence on the intensity of the three input beams, indicating that the measurements were performed in the weak field regime. However, the timescale of the ultrafast relaxation exhibits a dependence on the intensity of the XUV radiation. We interpreted the observed behaviour as the generation of a population grating of free-electrons and holes that, on the sub-ps timescale, relaxes to generate lattice excitations. The background free detection inherent to the X-TG approach allowed the determination of FEL-induced electron dynamics with a sensitivity largely exceeding that of transient reflectivity and transmissivity measurements, usually employed for this purpose.
RESUMO
FERMI is a seeded free-electron laser (FEL) facility located at the Elettra laboratory in Trieste, Italy, and is now in user operation with its first FEL line, FEL-1, covering the wavelength range between 100 and 20â nm. The second FEL line, FEL-2, a high-gain harmonic generation double-stage cascade covering the wavelength range 20-4â nm, has also completed commissioning and the first user call has been recently opened. An overview of the typical operating modes of the facility is presented.
RESUMO
Thin film magnetization reversal without applying external fields is an attractive perspective for applications in sensors and devices. One way to accomplish it is by fine-tuning the microstructure of a magnetic substrate via temperature control, as in the case of a thin Fe layer deposited on a MnAs/GaAs(001) template. This work reports a time-resolved resonant scattering study exploring the magnetic and structural properties of the Fe/MnAs system, using a 100 fs optical laser pulse to trigger local temperature variations and a 100 fs x-ray free-electron laser pulse to probe the induced magnetic and structural dynamics. The experiment provides direct evidence that a single optical laser pulse can reverse the Fe magnetization locally. It reveals that the time scale of the magnetization reversal is slower than that of the MnAs structural transformations triggered by the optical pulse, which take place after a few picoseconds already.
RESUMO
Ultrafast optical-domain spectroscopies allow to monitor in real time the motion of nuclei in molecules. Achieving element-selectivity had to await the advent of time resolved X-ray spectroscopy, which is now commonly carried at X-ray free electron lasers. However, detecting light element that are commonly encountered in organic molecules, remained elusive due to the need to work under vacuum. Here, we present an impulsive stimulated Raman scattering (ISRS) pump/carbon K-edge absorption probe investigation, which allowed observation of the low-frequency vibrational modes involving specific selected carbon atoms in the Ibuprofen RS dimer. Remarkably, by controlling the probe light polarization we can preferentially access the enantiomer of the dimer to which the carbon atoms belong.
RESUMO
Collective lattice dynamics determine essential aspects of condensed matter, such as elastic and thermal properties. These exhibit strong dependence on the length-scale, reflecting the marked wavevector dependence of lattice excitations. The extreme ultraviolet transient grating (EUV TG) approach has demonstrated the potential of accessing a wavevector range corresponding to the 10s of nm length-scale, representing a spatial scale of the highest relevance for fundamental physics and forefront technology, previously inaccessible by optical TG and other inelastic scattering methods. In this manuscript we report on the capabilities of this technique in the context of probing thermoelastic properties of matter, both in the bulk and at the surface, as well as discussing future developments and practical considerations.
RESUMO
We successfully use the corners of a common silicon nitride supporting window in lensless X-ray microscopy as extended references in differential holography to obtain a real space hologram of the illuminated object. Moreover, we combine this method with the iterative phasing techniques of coherent diffraction imaging to enhance the spatial resolution on the reconstructed object, and overcome the problem of missing areas in the collected data due to the presence of a beam stop, achieving a resolution close to 85 nm.
RESUMO
Laser-driven non-local electron dynamics in ultrathin magnetic samples on a sub-10 nm length scale is a key process in ultrafast magnetism. However, the experimental access has been challenging due to the nanoscopic and femtosecond nature of such transport processes. Here, we present a scattering-based experiment relying on a laser-induced electro- and magneto-optical grating in a Co/Pd ferromagnetic multilayer as a new technique to investigate non-local magnetization dynamics on nanometer length and femtosecond timescales. We induce a spatially modulated excitation pattern using tailored Al near-field masks with varying periodicities on a nanometer length scale and measure the first four diffraction orders in an x-ray scattering experiment with magnetic circular dichroism contrast at the free-electron laser facility FERMI, Trieste. The design of the periodic excitation mask leads to a strongly enhanced and characteristic transient scattering response allowing for sub-wavelength in-plane sensitivity for magnetic structures. In conjunction with scattering simulations, the experiment allows us to infer that a potential ultrafast lateral expansion of the initially excited regions of the magnetic film mediated by hot-electron transport and spin transport remains confined to below three nanometers.
RESUMO
The rapid development of extreme ultraviolet (EUV) and x-ray ultrafast coherent light sources such as free electron lasers (FELs) has triggered the extension of wave-mixing techniques to short wavelengths. This class of experiments, based on the interaction of matter with multiple light pulses through the Nth order susceptibility, holds the promise of combining intrinsic ultrafast time resolution and background-free signal detection with nanometer spatial resolution and chemical specificity. A successful approach in this direction has been the combination of the unique characteristics of the seeded FEL FERMI with dedicated four-wave-mixing (FWM) setups, which leads to the demonstration of EUV-based transient grating (TG) spectroscopy. In this perspective paper, we discuss how the TG approach can be extended toward more general FWM spectroscopies by exploring the intrinsic multiparameter nature of nonlinear processes, which derives from the ability of controlling the properties of each field independently.
RESUMO
Advances in developing ultrafast coherent sources operating at extreme ultraviolet (EUV) and x-ray wavelengths allow the extension of nonlinear optical techniques to shorter wavelengths. Here, we describe EUV transient grating spectroscopy, in which two crossed femtosecond EUV pulses produce spatially periodic nanoscale excitations in the sample and their dynamics is probed via diffraction of a third time-delayed EUV pulse. The use of radiation with wavelengths down to 13.3 nm allowed us to produce transient gratings with periods as short as 28 nm and observe thermal and coherent phonon dynamics in crystalline silicon and amorphous silicon nitride. This approach allows measurements of thermal transport on the ~10-nm scale, where the two samples show different heat transport regimes, and can be applied to study other phenomena showing nontrivial behaviors at the nanoscale, such as structural relaxations in complex liquids and ultrafast magnetic dynamics.
RESUMO
We report the results of resonant magnetic XUV reflectivity experiments performed at the XUV free-electron laser FERMI. Circularly polarized XUV light with the photon energy tuned to the Fe M2,3 edge is used to measure resonant magnetic reflectivities and the corresponding Q-resolved asymmetry of a Permalloy/Ta/Permalloy trilayer film. The asymmetry exhibits ultrafast changes on 240 fs time scales upon pumping with ultrashort IR laser pulses. Depending on the value of the wavevector transfer Qz , we observe both decreasing and increasing values of the asymmetry parameter, which is attributed to ultrafast changes in the vertical spin and charge density profiles of the trilayer film.
RESUMO
Exciting a ferromagnetic material with an ultrashort IR laser pulse is known to induce spin dynamics by heating the spin system and by ultrafast spin diffusion processes. Here, we report on measurements of spin-profiles and spin diffusion properties in the vicinity of domain walls in the interface region between a metallic Al layer and a ferromagnetic Co/Pd thin film upon IR excitation. We followed the ultrafast temporal evolution by means of an ultrafast resonant magnetic scattering experiment in surface scattering geometry, which enables us to exploit the evolution of the domain network within a 1/e distance of 3 nm to 5 nm from the Al/FM film interface. We observe a magnetization-reversal close to the domain wall boundaries that becomes more pronounced closer to the Al/FM film interface. This magnetization-reversal is driven by the different transport properties of majority and minority carriers through a magnetically disordered domain network. Its finite lateral extension has allowed us to measure the ultrafast spin-diffusion coefficients and ultrafast spin velocities for majority and minority carriers upon IR excitation.
RESUMO
A composite metallic foil (Al/Mg/Al) has been exposed to intense sub-100 fs free electron laser (FEL) pulses and driven to ultrafast massive photoionization. The resulting nonequilibrium state of matter has been monitored through absorption spectroscopy across the L(2,3) edge of Mg as a function of the FEL fluence. The raw spectroscopic data indicate that at about 100J/cm(2) the main absorption channels of the sample, i.e., Mg (2pâfree) and oxidized Al (valenceâfree), are almost saturated. The spectral behavior of the induced transparency has been interpreted with an analytical approach based on an effective ionization potential of the generated solid-density plasma.
RESUMO
Ultrafast magnetization reversal of a ferrimagnetic metallic alloy GdFeCo was investigated by time-resolved resonant magneto-optical Kerr effect measurements using a seeded free electron laser. The GdFeCo alloy was pumped by a linearly polarized optical laser pulse, and the following temporal evolution of the magnetization of Fe in GdFeCo was element-selectively traced by a probe free electron laser pulse with a photon energy tuned to the Fe M-edge. The results have been measured using rotating analyzer ellipsometry method and confirmed magnetization switching caused by ultrafast heating.
RESUMO
FERMI@Elettra, the first vacuum ultraviolet and soft X-ray free-electron laser (FEL) using by default a "seeded" scheme, became operational in 2011 and has been opened to users since December 2012. The parameters of the seeded FERMI FEL pulses and, in particular, the superior control of emitted radiation in terms of spectral purity and stability meet the stringent requirements for single-shot and resonant coherent diffraction imaging (CDI) experiments. The advantages of the intense seeded FERMI pulses with variable polarization have been demonstrated with the first experiments performed using the multipurpose experimental station operated at the diffraction and projection imaging (DiProI) beamline. The results reported here were obtained with fixed non-periodic targets during the commissioning period in 2012 using 20-32 nm wavelength range. They demonstrate that the performance of the FERMI FEL source and the experimental station meets the requirements of CDI, holography, and resonant magnetic scattering in both multi- and single-shot modes. Moreover, we present the first magnetic scattering experiments employing the fully circularly polarized FERMI pulses. The ongoing developments aim at pushing the lateral resolution by using shorter wavelengths provided by double-stage cascaded FERMI FEL-2 and probing ultrafast dynamic processes using different pump-probe schemes, including jitter-free seed laser pump or FEL-pump∕FEL-probe with two color FEL pulses generated by the same electron bunch.
RESUMO
Exploring the dynamics of matter driven to extreme non-equilibrium states by an intense ultrashort X-ray pulse is becoming reality, thanks to the advent of free-electron laser technology that allows development of different schemes for probing the response at variable time delay with a second pulse. Here we report the generation of two-colour extreme ultraviolet pulses of controlled wavelengths, intensity and timing by seeding of high-gain harmonic generation free-electron laser with multiple independent laser pulses. The potential of this new scheme is demonstrated by the time evolution of a titanium-grating diffraction pattern, tuning the two coherent pulses to the titanium M-resonance and varying their intensities. This reveals that an intense pulse induces abrupt pattern changes on a time scale shorter than hydrodynamic expansion and ablation. This result exemplifies the essential capabilities of the jitter-free multiple-colour free-electron laser pulse sequences to study evolving states of matter with element sensitivity.