Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Pharmacol Res ; 203: 107176, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583687

RESUMO

Cannabidiol (CBD), a non-psychotomimetic constituent of Cannabis sativa, has been recently approved for epileptic syndromes often associated with Autism spectrum disorder (ASD). However, the putative efficacy and mechanism of action of CBD in patients suffering from ASD and related comorbidities remain debated, especially because of the complex pharmacology of CBD. We used pharmacological, immunohistochemical and biochemical approaches to investigate the effects and mechanisms of action of CBD in the recently validated Fmr1-Δexon 8 rat model of ASD, that is also a model of Fragile X Syndrome (FXS), the leading monogenic cause of autism. CBD rescued the cognitive deficits displayed by juvenile Fmr1-Δexon 8 animals, without inducing tolerance after repeated administration. Blockade of CA1 hippocampal GPR55 receptors prevented the beneficial effect of both CBD and the fatty acid amide hydrolase (FAAH) inhibitor URB597 in the short-term recognition memory deficits displayed by Fmr1-Δexon 8 rats. Thus, CBD may exert its beneficial effects through CA1 hippocampal GPR55 receptors. Docking analysis further confirmed that the mechanism of action of CBD might involve competition for brain fatty acid binding proteins (FABPs) that deliver anandamide and related bioactive lipids to their catabolic enzyme FAAH. These findings demonstrate that CBD reduced cognitive deficits in a rat model of FXS and provide initial mechanistic insights into its therapeutic potential in neurodevelopmental disorders.


Assuntos
Canabidiol , Modelos Animais de Doenças , Síndrome do Cromossomo X Frágil , Hipocampo , Receptores de Canabinoides , Reconhecimento Psicológico , Animais , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Síndrome do Cromossomo X Frágil/metabolismo , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Receptores de Canabinoides/metabolismo , Masculino , Reconhecimento Psicológico/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Ratos , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/metabolismo , Memória/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Simulação de Acoplamento Molecular
2.
Int J Mol Sci ; 24(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36835329

RESUMO

Several studies have supported the association between maternal immune activation (MIA) caused by exposure to pathogens or inflammation during critical periods of gestation and an increased susceptibility to the development of various psychiatric and neurological disorders, including autism and other neurodevelopmental disorders (NDDs), in the offspring. In the present work, we aimed to provide extensive characterization of the short- and long-term consequences of MIA in the offspring, both at the behavioral and immunological level. To this end, we exposed Wistar rat dams to Lipopolysaccharide and tested the infant, adolescent and adult offspring across several behavioral domains relevant to human psychopathological traits. Furthermore, we also measured plasmatic inflammatory markers both at adolescence and adulthood. Our results support the hypothesis of a deleterious impact of MIA on the neurobehavioral development of the offspring: we found deficits in the communicative, social and cognitive domains, together with stereotypic-like behaviors and an altered inflammatory profile at the systemic level. Although the precise mechanisms underlying the role of neuroinflammatory states in neurodevelopment need to be clarified, this study contributes to a better understanding of the impact of MIA on the risk of developing behavioral deficits and psychiatric illness in the offspring.


Assuntos
Transtorno Autístico , Efeitos Tardios da Exposição Pré-Natal , Humanos , Ratos , Gravidez , Animais , Feminino , Adulto , Masculino , Adolescente , Ratos Wistar , Lipopolissacarídeos , Comportamento Animal/fisiologia , Cognição , Modelos Animais de Doenças
3.
Nutr Neurosci ; 25(5): 898-911, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-32912100

RESUMO

Background and objective: Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder for which no treatments exist. Fragile X syndrome (FXS) is the most common form of inherited mental retardation and the most frequent monogenic cause of ASD. Given the lack of pharmacological treatments for ASD, increasing interest is devoted to non-pharmacological approaches, including dietary interventions. Omega-3 polyunsaturated fatty acids (PUFAs) are critical for neurobehavioraldevelopment. This study had two aims: 1. To validatethe recently developed Fmr1-Δexon 8 rat model of FXS; 2. To assess the impact of omega-3 PUFAs dietary supplementation during pregnancy and lactation on the altered behavior displayed by Fmr1-Δexon 8 rats.Methods: Female Fmr1-Δexon 8 and wild-type Sprague-Dawley rats were fed with either an omega-3 PUFAs enriched diet or with an isocaloric control diet during pregnancy and lactation. Behavioral experiments were carried out on the infant (Postnatal days (PNDs) 9 and 13), juvenile (PND 35) and adult (PND 90) male offspring.Results: Fmr1-Δexon 8 pups showed hypolocomotion, reduced ultrasonic vocalizations (USVs) emission and impaired social discrimination compared to wild-type controls. Juvenile and adult Fmr1-Δexon 8 rats showed deficits in the social and cognitive domains, that were counteracted by perinatal omega-3 PUFAs supplementation.Conclusion: Our results support the validity of the Fmr1-Δexon 8 rat model to mimic key autistic-like features and support an important role of omega-3 PUFAs during of neurodevelopment. Although the mechanisms underlying the beneficial effects of omega-3 PUFAs supplementation in ASD needs to be clarified, this dietary intervention holds promise to mitigate core and comorbid autistic features.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Ácidos Graxos Ômega-3 , Síndrome do Cromossomo X Frágil , Animais , Transtorno do Espectro Autista/prevenção & controle , Transtorno Autístico/prevenção & controle , Cognição , Suplementos Nutricionais , Feminino , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Humanos , Masculino , Modelos Genéticos , Gravidez , Ratos , Ratos Sprague-Dawley
4.
Int J Mol Sci ; 23(6)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35328827

RESUMO

Fragile X Syndrome (FXS) is the most frequent form of inherited X-linked pathology, associated with an intellectual and developmental disability, and currently considered the first monogenic cause of autism spectrum disorder (ASD). Low levels of total cholesterol reported in the serum of FXS patients, and evidence that FMRP targets a subset of mRNAs encoding proteins of lipid synthesis and transport suggests that the cholesterol metabolism impairments could be involved in FXS. Thus, the aim of the presented work was to investigate the modulations of the cholesterol biosynthetic pathway and its end-products in a recently developed Fmr1-Δexon 8 rat model of FXS. Here, we show that this experimental model mimics what is found in FXS patients, exhibiting a lower serum cholesterol content, accompanied by a reduction in food intake and body weight compared to WT animals. Moreover, alterations of proteins committed to cholesterol synthesis and uptake have been observed in the amygdala, prefrontal cortex and nucleus accumbens. Interestingly, the end-products show a brain region-dependent modulation in Fmr1-Δexon 8 rats. Overall, our results demonstrate that the cholesterol biosynthetic pathway is altered in some brain regions of this preclinical model of FXS. This finding has relevance for future studies to delve deeper into the involvement of this metabolic process in FXS, and thus its possible role as a therapeutic target.


Assuntos
Transtorno do Espectro Autista , Síndrome do Cromossomo X Frágil , Animais , Transtorno do Espectro Autista/complicações , Vias Biossintéticas , Encéfalo/metabolismo , Colesterol/uso terapêutico , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/metabolismo , Ratos
5.
J Neurochem ; 157(5): 1408-1435, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33569830

RESUMO

Social rewards are fundamental to survival and overall health. Several studies suggest that adequate social stimuli during early life are critical for developing appropriate socioemotional and cognitive skills, whereas adverse social experiences negatively affect the proper development of brain and behavior, by increasing the susceptibility to develop neuropsychiatric conditions. Therefore, a better understanding of the neural mechanisms underlying social interactions, and their rewarding components in particular, is an important challenge of current neuroscience research. In this context, preclinical research has a crucial role: Animal models allow to investigate the neurobiological aspects of social reward in order to shed light on possible neurochemical alterations causing aberrant social reward processing in neuropsychiatric diseases, and they allow to test the validity and safety of innovative therapeutic strategies. Here, we discuss preclinical research that has investigated the rewarding properties of two forms of social interaction that occur in different phases of the lifespan of mammals, that is, mother-infant interaction and social interactions with peers, by focusing on the main neurotransmitter systems mediating their rewarding components. Together, the research performed so far helped to elucidate the mechanisms of social reward and its psychobiological components throughout development, thus increasing our understanding of the neurobiological substrates sustaining social functioning in health conditions and social dysfunction in major psychiatric disorders.


Assuntos
Neuroquímica , Recompensa , Roedores/psicologia , Comportamento Social , Envelhecimento/psicologia , Animais , Humanos , Camundongos , Ratos , Interação Social
6.
Neuropsychopharmacology ; 48(6): 897-907, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36114286

RESUMO

Autism spectrum disorder (ASD) has a multifactorial etiology. Major efforts are underway to understand the neurobiological bases of ASD and to develop efficacious treatment strategies. Recently, the use of cannabinoid compounds in children with neurodevelopmental disorders including ASD has received increasing attention. Beyond anecdotal reports of efficacy, however, there is limited current evidence supporting such an intervention and the clinical studies currently available have intrinsic limitations that make the interpretation of the findings challenging. Furthermore, as the mechanisms underlying the beneficial effects of cannabinoid compounds in neurodevelopmental disorders are still largely unknown, the use of drugs targeting the endocannabinoid system remains controversial. Here, we studied the role of endocannabinoid neurotransmission in the autistic-like traits displayed by the recently validated Fmr1-Δexon 8 rat model of autism. Fmr1-Δexon 8 rats showed reduced anandamide levels in the hippocampus and increased 2-arachidonoylglycerol (2-AG) content in the amygdala. Systemic and intra-hippocampal potentiation of anandamide tone through administration of the anandamide hydrolysis inhibitor URB597 ameliorated the cognitive deficits displayed by Fmr1-Δexon 8 rats along development, as assessed through the novel object and social discrimination tasks. Moreover, blockade of amygdalar 2-AG signaling through intra-amygdala administration of the CB1 receptor antagonist SR141716A prevented the altered sociability displayed by Fmr1-Δexon 8 rats. These findings demonstrate that anandamide and 2-AG differentially modulate specific autistic-like traits in Fmr1-Δexon 8 rats in a brain region-specific manner, suggesting that fine changes in endocannabinoid mechanisms contribute to ASD-related behavioral phenotypes.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Canabinoides , Ratos , Animais , Endocanabinoides , Transtorno Autístico/tratamento farmacológico , Transtorno do Espectro Autista/tratamento farmacológico , Modelos Genéticos , Alcamidas Poli-Insaturadas/farmacologia , Fenótipo , Receptor CB1 de Canabinoide/genética , Proteína do X Frágil da Deficiência Intelectual
7.
Psychopharmacology (Berl) ; 240(1): 137-147, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36469097

RESUMO

RATIONALE: Fragile X syndrome (FXS) is the most common form of inherited intellectual disability (ID) and the leading monogenic cause of autism spectrum disorder (ASD). Serotonergic neurotransmission has a key role in the modulation of neuronal activity during development, and therefore, it has been hypothesized to be involved in ASD and co-occurring conditions including FXS. As serotonin is involved in synaptic remodeling and maturation, serotonergic insufficiency during childhood may have a compounding effect on brain patterning in neurodevelopmental disorders, manifesting as behavioral and emotional symptoms. Thus, compounds that stimulate serotonergic signaling such as psilocybin may offer promise as effective early interventions for developmental disorders such as ASD and FXS. OBJECTIVES: The aim of the present study was to test whether different protocols of psilocybin administration mitigate cognitive deficits displayed by the recently validated Fmr1-Δexon 8 rat model of ASD, which is also a model of FXS. RESULTS: Our results revealed that systemic and oral administration of psilocybin microdoses normalizes the aberrant cognitive performance displayed by adolescent Fmr1-Δexon 8 rats in the short-term version of the novel object recognition test-a measure of exploratory behavior, perception, and recognition. CONCLUSIONS: These data support the hypothesis that serotonin-modulating drugs such as psilocybin may be useful to ameliorate ASD-related cognitive deficits. Overall, this study provides evidence of the beneficial effects of different schedules of psilocybin treatment in mitigating the short-term cognitive deficit observed in a rat model of FXS.


Assuntos
Transtorno do Espectro Autista , Síndrome do Cromossomo X Frágil , Ratos , Animais , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Síndrome do Cromossomo X Frágil/psicologia , Psilocibina/farmacologia , Psilocibina/uso terapêutico , Serotonina , Cognição , Proteína do X Frágil da Deficiência Intelectual
8.
Front Psychiatry ; 13: 851679, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35280167

RESUMO

Prenatal exposure to valproic acid (VPA) is a risk factor for autism spectrum disorder (ASD) in humans and it induces autistic-like behaviors in rodents. Imbalances between GABAergic and glutamatergic neurotransmission and increased oxidative stress together with altered glutathione (GSH) metabolism have been hypothesized to play a role in both VPA-induced embriotoxicity and in human ASD. N-acetylcysteine (NAC) is an antioxidant precursor of glutathione and a modulator of glutamatergic neurotransmission that has been tested in ASD, although the clinical studies currently available provided controversial results. Here, we explored the effects of repeated NAC (150 mg/kg) administration on core autistic-like features and altered brain GSH metabolism in the VPA (500 mg/kg) rat model of ASD. Furthermore, we measured the mRNA expression of genes encoding for scaffolding and transcription regulation proteins, as well as the subunits of NMDA and AMPA receptors and metabotropic glutamate receptors mGLUR1 and mGLUR5 in brain areas that are relevant to ASD. NAC administration ameliorated the social deficit displayed by VPA-exposed rats in the three-chamber test, but not their stereotypic behavior in the hole board test. Furthermore, NAC normalized the altered GSH levels displayed by these animals in the hippocampus and nucleus accumbens, and it partially rescued the altered expression of post-synaptic terminal network genes found in VPA-exposed rats, such as NR2a, MGLUR5, GLUR1, and GLUR2 in nucleus accumbens, and CAMK2, NR1, and GLUR2 in cerebellum. These data indicate that NAC treatment selectively mitigates the social dysfunction displayed by VPA-exposed rats normalizing GSH imbalance and reestablishing the expression of genes related to synaptic function in a brain region-specific manner. Taken together, these data contribute to clarify the behavioral impact of NAC in ASD and the molecular mechanisms that underlie its effects.

9.
Transl Psychiatry ; 12(1): 119, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35338117

RESUMO

Pharmacological inhibition of phosphodiesterase 2A (PDE2A), which catalyzes the hydrolysis of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), has recently been proposed as a novel therapeutic tool for Fragile X Syndrome (FXS), the leading monogenic cause of Autism Spectrum Disorder (ASD). Here, we investigated the role of PDE2A in ASD pathogenesis using two rat models that reflect one of either the genetic or environmental factors involved in the human disease: the genetic Fmr1-Δexon 8 rat model and the environmental rat model based on prenatal exposure to valproic acid (VPA, 500 mg/kg). Prior to behavioral testing, the offspring was treated with the PDE2A inhibitor BAY607550 (0.05 mg/kg at infancy, 0.1 mg/kg at adolescence and adulthood). Socio-communicative symptoms were assessed in both models through the ultrasonic vocalization test at infancy and three-chamber test at adolescence and adulthood, while cognitive impairments were assessed by the novel object recognition test in Fmr1-Δexon 8 rats (adolescence and adulthood) and by the inhibitory avoidance test in VPA-exposed rats (adulthood). PDE2A enzymatic activity in VPA-exposed infant rats was also assessed. In line with the increased PDE2A enzymatic activity previously observed in the brain of Fmr1-KO animals, we found an altered upstream regulation of PDE2A activity in the brain of VPA-exposed rats at an early developmental age (p < 0.05). Pharmacological inhibition of PDE2A normalized the communicative (p < 0.01, p < 0.05), social (p < 0.001, p < 0.05), and cognitive impairment (p < 0.001) displayed by both Fmr1-Δexon 8 and VPA-exposed rats. Altogether, these data highlight a key role of PDE2A in brain development and point to PDE2A inhibition as a promising pharmacological approach for the deficits common to both FXS and ASD.


Assuntos
Transtorno do Espectro Autista , Síndrome do Cromossomo X Frágil , Animais , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/tratamento farmacológico , Transtorno do Espectro Autista/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/metabolismo , Feminino , Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil/genética , Gravidez , Ratos , Ácido Valproico/farmacologia
10.
Neurosci Biobehav Rev ; 121: 128-143, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33358985

RESUMO

Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder with a multifactorial etiology. Latest researches are raising the hypothesis of a link between the onset of the main behavioral symptoms of ASD and the chronic neuroinflammatory condition of the autistic brain; increasing evidence of this connection is shedding light on new possible players in the pathogenesis of ASD. The endocannabinoid system (ECS) has a key role in neurodevelopment as well as in normal inflammatory responses and it is not surprising that many preclinical and clinical studies account for alterations of the endocannabinoid signaling in ASD. These findings lay the foundation for a better understanding of the neurochemical mechanisms underlying ASD and for new therapeutic attempts aimed at exploiting the renowned anti-inflammatory properties of cannabinoids to treat pathologies encompassed in the autistic spectrum. This review discusses the current preclinical and clinical evidence supporting a key role of the ECS in the neuroinflammatory state that characterizes ASD, providing hints to identify new biomarkers in ASD and promising therapies for the future.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Canabinoides , Transtorno do Espectro Autista/tratamento farmacológico , Encéfalo , Canabinoides/uso terapêutico , Endocanabinoides , Humanos
11.
Neuropsychopharmacology ; 45(12): 2012-2019, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32506112

RESUMO

Methylenedioxypyrovalerone (MDPV) is the most popular synthetic cathinone found in products marketed as 'bath salts', widely abused among teenagers and young adults. Synthetic cathinones have pharmacological effects resembling those of psychostimulants, which are known to disrupt a variety of social behaviors. However, despite the popular use of MDPV by young people in social contexts, information about its effects on social behavior is scarce. To investigate the impact of MDPV on social behavior at young age, and the underlying neurobehavioral mechanisms, we focused on social play behavior. Social play behavior is the most characteristic social behavior displayed by young mammals and it is crucial for neurobehavioral development. Treatment with MDPV reduced social play behavior in both juvenile and young adult male rats, and its play-suppressant effect was subject to tolerance but not sensitization. As the behavioral effects of MDPV have been ascribed to dopaminergic and noradrenergic neurotransmission, and given the role of these neurotransmitters in social play, we investigated the involvement of dopamine and noradrenaline in the play-suppressant effects of MDPV. The effects of MDPV on social play were blocked by either the α2 adrenoceptor antagonist RX821002 or the dopamine receptor antagonist flupenthixol, given alone or together at sub-effective doses. In sum, MDPV selectively suppresses the most vigorous social behavior of developing rats through both noradrenergic and dopaminergic mechanisms. This study provides important preclinical evidence of the deleterious effects of MDPV on social behavior, and as such increases our understanding of the neurobehavioral effects of this popular cathinone.


Assuntos
Benzodioxóis , Estimulantes do Sistema Nervoso Central , Animais , Benzodioxóis/farmacologia , Dopamina , Masculino , Pirrolidinas/farmacologia , Ratos , Catinona Sintética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA