Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Integr Neurosci ; 21(5): 144, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36137960

RESUMO

Major depressive disorder is one of the primary causes of disability and disease worldwide. The therapy of depression is prevalently based on monoamine reuptake blockers; consequently, investigations aimed to clarify the aetiology of depression have mostly looked at brain areas innervated by monamines and brain circuitry involved in inputs and outputs of these areas. The recent approval of esketamine as a rapid-acting antidepressant drug in treatment-resistant depression, has definitively projected glutamatergic transmission as a key constituent in the use of new drugs in antidepressant therapy. In this review we have examined the role of several brain areas: namely, the hippocampus, the medial Prefrontal Cortex (mPFC), the nucleus accumbens (NAc), the Lateral Habenula (LHb), the amygdala and the Bed Nucleus of Stria Terminalis (BNST). The reason for undertaking an in-depth review is due to their significant role in animal models of depression, which highlight their inter-connections as well as their inputs and outputs. In particular, we examined the modification of the expression and release of the brain derived neurotrophic factor (BDNF) and associated changes in dendritic density induced by chronic stress in the above areas of animal models of depression (AnMD). We also examined the effectiveness of ketamine and standard antidepressants in reversing these alterations, with the aim of identifying a brain circuit where pathological alteration might trigger the appearance of depression symptoms. Based on the role that these brain areas play in the generation of the symptoms of depression, we assumed that the mPFC, the NAc/Ventral Tegmental Area (VTA) and the hippocampus form a primary circuit of depression, where regular performance can endure resilience to stress. We have also examined how this circuit is affected by environmental challenges and how the activation of one or more areas, including amygdala, LHb or BNST can produce local detrimental effects that spread over specific circuits and generate depression symptoms. Furthermore, we also examined how, through their outputs, these three areas can negatively influence the NAc/VTA-PFC circuit directly or through the BNST, to generate anhedonia, one of the most devastating symptoms of depression.


Assuntos
Transtorno Depressivo Maior , Ketamina , Animais , Antidepressivos/farmacologia , Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Depressão/tratamento farmacológico , Modelos Animais de Doenças , Ketamina/metabolismo , Ketamina/farmacologia , Modelos Animais
2.
Addict Biol ; 26(1): e12864, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-31849152

RESUMO

The bed nucleus of stria terminalis (BNST) is a complex limbic area involved in neuroendocrine and behavioural responses and, in particular, in the modulation of the stress response. BNST is innervated by dopamine and norepinephrine, which are known to be involved in drug addiction. It is also known that several drugs of abuse increase dopamine transmission in the BNST, but there has been less research regarding the effect on norepinephrine transmission. Here, we have used the microdialysis technique to investigate the effect of several drugs of abuse on norepinephrine transmission in the BNST of freely moving rats. We observed that nicotine (0.2-0.4 mg/kg), cocaine (2.5-5 mg/kg), amphetamine (0.25-0.5 mg/kg), and ethanol (0.5-1.0 g/kg), dose-dependently increased norepinephrine output while the effect of morphine at 3.0 was lower than that of 1.0 mg/kg. These results suggest that many drugs of abuse, though possessing diverse mechanisms of action, share the property of increasing norepinephrine transmission in the BNST. Furthermore, we suggest that the recurring activation of NE transmission in the BNST, due to drug administration, contributes to the alteration of the function that BNST assumes in how the behavioural response to stress manifests, favouring the establishment of the stress-induced drug seeking.


Assuntos
Anfetamina/farmacologia , Cocaína/farmacologia , Nicotina/farmacologia , Norepinefrina/metabolismo , Núcleos Septais/efeitos dos fármacos , Animais , Comportamento de Procura de Droga , Etanol/farmacologia , Masculino , Morfina/farmacologia , Ratos
3.
Int J Mol Sci ; 21(18)2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32937957

RESUMO

Parkinson's disease (PD) is considered a synucleinopathy because of the intraneuronal accumulation of aggregated α-synuclein (αSyn). Recent evidence points to soluble αSyn-oligomers (αSynO) as the main cytotoxic species responsible for cell death. Given the pivotal role of αSyn in PD, αSyn-based models are crucial for the investigation of toxic mechanisms and the identification of new therapeutic targets in PD. By using a metabolomics approach, we evaluated the metabolic profile of brain and serum samples of rats infused unilaterally with preformed human αSynOs (HαSynOs), or vehicle, into the substantia nigra pars compacta (SNpc). Three months postinfusion, the striatum was dissected for striatal dopamine (DA) measurements via High Pressure Liquid Chromatography (HPLC) analysis and mesencephalon and serum samples were collected for the evaluation of metabolite content via gas chromatography mass spectrometry analysis. Multivariate, univariate and correlation statistics were applied. A 40% decrease of DA content was measured in the HαSynO-infused striatum as compared to the contralateral and the vehicle-infused striata. Decreased levels of dehydroascorbic acid, myo-inositol, and glycine, and increased levels of threonine, were found in the mesencephalon, while increased contents of fructose and mannose, and a decrease in glycine and urea, were found in the serum of HαSynO-infused rats. The significant correlation between DA and metabolite content indicated that metabolic variations reflected the nigrostriatal degeneration. Collectively, the metabolomic fingerprint of HαSynO-infused rats points to an increase of oxidative stress markers, in line with PD neuropathology, and provides hints for potential biomarkers of PD.


Assuntos
Metaboloma/fisiologia , Doença de Parkinson/metabolismo , Substância Negra/metabolismo , alfa-Sinucleína/metabolismo , Animais , Biomarcadores/metabolismo , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Humanos , Masculino , Metabolômica/métodos , Neurônios/metabolismo , Estresse Oxidativo/fisiologia , Ratos , Ratos Sprague-Dawley
4.
Int J Mol Sci ; 21(22)2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33198335

RESUMO

The accumulation of aggregated α-synuclein (αSyn) is a hallmark of Parkinson's disease (PD). Current evidence indicates that small soluble αSyn oligomers (αSynOs) are the most toxic species among the forms of αSyn aggregates, and that size and topological structural properties are crucial factors for αSynOs-mediated toxicity, involving the interaction with either neurons or glial cells. We previously characterized a human αSynO (H-αSynO) with specific structural properties promoting toxicity against neuronal membranes. Here, we tested the neurotoxic potential of these H-αSynOs in vivo, in relation to the neuropathological and symptomatic features of PD. The H-αSynOs were unilaterally infused into the rat substantia nigra pars compacta (SNpc). Phosphorylated αSyn (p129-αSyn), reactive microglia, and cytokine levels were measured at progressive time points. Additionally, a phagocytosis assay in vitro was performed after microglia pre-exposure to αsynOs. Dopaminergic loss, motor, and cognitive performances were assessed. H-αSynOs triggered p129-αSyn deposition in SNpc neurons and microglia and spread to the striatum. Early and persistent neuroinflammatory responses were induced in the SNpc. In vitro, H-αSynOs inhibited the phagocytic function of microglia. H-αsynOs-infused rats displayed early mitochondrial loss and abnormalities in SNpc neurons, followed by a gradual nigrostriatal dopaminergic loss, associated with motor and cognitive impairment. The intracerebral inoculation of structurally characterized H-αSynOs provides a model of progressive PD neuropathology in rats, which will be helpful for testing neuroprotective therapies.


Assuntos
Modelos Animais de Doenças , Doença de Parkinson/fisiopatologia , Substância Negra/metabolismo , alfa-Sinucleína/metabolismo , Animais , Citocinas/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Humanos , Inflamação , Masculino , Microglia/metabolismo , Neurônios/metabolismo , Fagocitose , Fosforilação , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/metabolismo , Substância Negra/patologia
5.
Mov Disord ; 34(12): 1818-1830, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31335998

RESUMO

BACKGROUND: Thalidomide and closely related analogues are used clinically for their immunomodulatory and antiangiogenic properties mediated by the inhibition of the proinflammatory cytokine tumor necrosis factor α. Neuroinflammation and angiogenesis contribute to classical neuronal mechanisms underpinning the pathophysiology of l-dopa-induced dyskinesia, a motor complication associated with l-dopa therapy in Parkinson's disease. The efficacy of thalidomide and the more potent derivative 3,6'-dithiothalidomide on dyskinesia was tested in the 6-hydroxydopamine Parkinson's disease model. METHODS: Three weeks after 6-hydroxydopamine infusion, rats received 10 days of treatment with l-dopa plus benserazide (6 mg/kg each) and thalidomide (70 mg/kg) or 3,6'-dithiothalidomide (56 mg/kg), and dyskinesia and contralateral turning were recorded daily. Rats were euthanized 1 hour after the last l-dopa injection, and levels of tumor necrosis factor-α, interleukin-10, OX-42, vimentin, and vascular endothelial growth factor immunoreactivity were measured in their striatum and substantia nigra reticulata to evaluate neuroinflammation and angiogenesis. Striatal levels of GLUR1 were measured as a l-dopa-induced postsynaptic change that is under tumor necrosis factor-α control. RESULTS: Thalidomide and 3,6'-dithiothalidomide significantly attenuated the severity of l-dopa-induced dyskinesia while not affecting contralateral turning. Moreover, both compounds inhibited the l-dopa-induced microgliosis and excessive tumor necrosis factor-α in the striatum and substantia nigra reticulata, while restoring physiological levels of the anti-inflammatory cytokine interleukin-10. l-Dopa-induced angiogenesis was inhibited in both basal ganglia nuclei, and l-dopa-induced GLUR1 overexpression in the dorsolateral striatum was restored to normal levels. CONCLUSIONS: These data suggest that decreasing tumor necrosis factor-α levels may be useful to reduce the appearance of dyskinesia, and thalidomide, and more potent derivatives may provide an effective therapeutic approach to dyskinesia. © 2019 International Parkinson and Movement Disorder Society.


Assuntos
Antiparkinsonianos/efeitos adversos , Discinesia Induzida por Medicamentos/terapia , Fatores Imunológicos/uso terapêutico , Levodopa/efeitos adversos , Doença de Parkinson/complicações , Talidomida/análogos & derivados , Talidomida/uso terapêutico , Inibidores da Angiogênese/uso terapêutico , Animais , Citocinas/metabolismo , Discinesia Induzida por Medicamentos/psicologia , Interleucina-10/metabolismo , Masculino , Neostriado/metabolismo , Oxidopamina , Doença de Parkinson/tratamento farmacológico , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/metabolismo , Substância Negra/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
6.
Addict Biol ; 20(1): 182-93, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24103023

RESUMO

Ethanol excites dopamine (DA) neurons in the posterior ventral tegmental area (pVTA). This effect is responsible for ethanol's motivational properties and may contribute to alcoholism. Evidence indicates that catalase-mediated conversion of ethanol into acetaldehyde in pVTA plays a critical role in this effect. Acetaldehyde, in the presence of DA, condensates with it to generate salsolinol. Salsolinol, when administered in pVTA, excites pVTA DA cells, elicits DA transmission in nucleus accumbens and sustains its self-administration in pVTA. Here we show, by using ex vivo electrophysiology, that ethanol and acetaldehyde, but not salsolinol, failed to stimulate pVTA DA cell activity in mice administered α-methyl-p-tyrosine, a DA biosynthesis inhibitor that reduces somatodendritic DA release. This effect was specific for ethanol and acetaldehyde since morphine, similarly to salsolinol, was able to excite pVTA DA cells in α-methyl-p-tyrosine-treated mice. However, when DA was bath applied in slices from α-methyl-p-tyrosine-treated mice, ethanol-induced excitation of pVTA DA neurons was restored. This effect requires ethanol oxidation into acetaldehyde given that, when H2 O2 -catalase system was impaired by either 3-amino-1,2,4-triazole or in vivo administration of α-lipoic acid, ethanol did not enhance DA cell activity. Finally, high performance liquid chromatography-tandem mass spectrometry analysis of bath medium detected salsolinol only after co-application of ethanol and DA in α-methyl-p-tyrosine-treated mice. These results demonstrate the relationship between ethanol and salsolinol effects on pVTA DA neurons, help to untangle the mechanism(s) of action of ethanol in this area and contribute to an exciting research avenue prosperous of theoretical and practical consequences.


Assuntos
Acetaldeído/farmacologia , Depressores do Sistema Nervoso Central/farmacologia , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Etanol/farmacologia , Isoquinolinas/farmacologia , Área Tegmentar Ventral/efeitos dos fármacos , Amitrol (Herbicida)/farmacologia , Animais , Antioxidantes/farmacologia , Catalase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Camundongos , Núcleo Accumbens/efeitos dos fármacos , Ácido Tióctico/farmacologia , alfa-Metiltirosina/farmacologia
7.
Artigo em Inglês | MEDLINE | ID: mdl-38879069

RESUMO

Adolescent stress (AS) has been associated with higher vulnerability to psychiatric disorders such as schizophrenia, depression, or drug dependence. Moreover, the alteration of brain catecholamine (CAT) transmission in the medial prefrontal cortex (mPFC) has been found to play a major role in the etiology of psychiatric disturbances. We investigated the effect of adolescent stress on CAT transmission in the mPFC of freely moving adult rats because of the importance of this area in the etiology of psychiatric disorders, and because CAT transmission is the target of a relevant group of drugs used in the therapy of depression and psychosis. We assessed basal dopamine (DA) and norepinephrine (NE) extracellular concentrations (output) by brain microdialysis in in the mPFC of adult rats that were exposed to chronic mild stress in adolescence. To ascertain the role of an altered release or reuptake, we stimulated DA and NE output by administering either different doses of amphetamine (0.5 and 1.0 mg / kg s.c.), which by a complex mechanism determines a dose dependent increase in the CAT output, or reboxetine (10 mg/kg i.p.), a selective NE reuptake inhibitor. The results showed the following: (i) basal DA output in AS rats was lower than in controls, while no difference in basal NE output was observed; (ii) amphetamine, dose dependently, stimulated DA and NE output to a greater extent in AS rats than in controls; (iii) reboxetine stimulated NE output to a greater extent in AS rats than in controls, while no difference in stimulated DA output was observed between the two groups. These results show that AS determines enduring effects on DA and NE transmission in the mPFC and might lead to the occurrence of psychiatric disorders or increase the vulnerability to drug addiction.

8.
Exp Neurol ; 372: 114651, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38092188

RESUMO

Mild cognitive impairment (MCI) is a common trait of Parkinson's disease (PD), often associated with early motor deficits, eventually evolving to PD with dementia in later disease stages. The neuropathological substrate of MCI is poorly understood, which weakens the development and administration of proper therapies. In an α-synuclein (αSyn)-based model of PD featuring early motor and cognitive impairments, we investigated the transcriptome profile of brain regions involved in PD with cognitive deficits, via a transcriptomic analysis based on RNA sequencing (RNA-seq) technology. Rats infused in the substantia nigra with human α-synuclein oligomers (H-SynOs) developed mild cognitive deficits after three months, as measured by the two-trial recognition test in a Y-maze and the novel object recognition test. RNA-seq analysis showed that 17,436 genes were expressed in the anterior cingulate cortex (ACC) and 17,216 genes in the hippocampus (HC). In the ACC, 51 genes were differentially expressed between vehicle and H-αSynOs treated samples, which showed N= 21 upregulated and N = 30 downregulated genes. In the HC, 104 genes were differentially expressed, the majority of them not overlapping with DEGs in the ACC, with N = 41 upregulated and N = 63 downregulated in H-αSynOs-treated samples. The Gene Ontology (GO) and the Kyoto Encyclopedia of Gene and Genomes (KEGG) analysis, followed by the protein-protein interaction (PPI) network inspection of DEGs, revealed that in the ACC most enriched terms were related with immune functions, specifically with antigen processing/presentation via the major histocompatibility complex (MHC) class II and phagocytosis via CD68, supporting a role for dysregulated immune responses in early PD cognitive dysfunction. Immunofluorescence analysis confirmed the decreased expression of CD68 within microglial cells. In contrast, the most significantly enriched terms in the HC were mainly involved in mitochondrial homeostasis, potassium voltage-gated channel, cytoskeleton and fiber organisation, suggesting that the gene expression in the neuronal population was mostly affected in this region in early disease stages. Altogether results show that H-αSynOs trigger a region-specific dysregulation of gene expression in ACC and HC, providing a pathological substrate for MCI associated with early PD.


Assuntos
Disfunção Cognitiva , Doença de Parkinson , Humanos , Animais , Ratos , Doença de Parkinson/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Disfunção Cognitiva/genética , Disfunção Cognitiva/patologia , Perfilação da Expressão Gênica , Transcriptoma , Cognição
9.
Neurotherapeutics ; 19(1): 305-324, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35072912

RESUMO

Marketed drugs for Parkinson's disease (PD) treat disease motor symptoms but are ineffective in stopping or slowing disease progression. In the quest of novel pharmacological approaches that may target disease progression, drug-repurposing provides a strategy to accelerate the preclinical and clinical testing of drugs already approved for other medical indications. Here, we targeted the inflammatory component of PD pathology, by testing for the first time the disease-modifying properties of the immunomodulatory imide drug (IMiD) pomalidomide in a translational rat model of PD neuropathology based on the intranigral bilateral infusion of toxic preformed oligomers of human α-synuclein (H-αSynOs). The neuroprotective effect of pomalidomide (20 mg/kg; i.p. three times/week 48 h apart) was tested in the first stage of disease progression by means of a chronic two-month administration, starting 1 month after H-αSynOs infusion, when an already ongoing neuroinflammation is observed. The intracerebral infusion of H-αSynOs induced an impairment in motor and coordination performance that was fully rescued by pomalidomide, as assessed via a battery of motor tests three months after infusion. Moreover, H-αSynOs-infused rats displayed a 40-45% cell loss within the bilateral substantia nigra, as measured by stereological counting of TH + and Nissl-stained neurons, that was largely abolished by pomalidomide. The inflammatory response to H-αSynOs infusion and the pomalidomide treatment was evaluated both in CNS affected areas and peripherally in the serum. A reactive microgliosis, measured as the volume occupied by the microglial marker Iba-1, was present in the substantia nigra three months after H-αSynOs infusion as well as after H-αSynOs plus pomalidomide treatment. However, microglia differed for their phenotype among experimental groups. After H-αSynOs infusion, microglia displayed a proinflammatory profile, producing a large amount of the proinflammatory cytokine TNF-α. In contrast, pomalidomide inhibited the TNF-α overproduction and elevated the anti-inflammatory cytokine IL-10. Moreover, the H-αSynOs infusion induced a systemic inflammation with overproduction of serum proinflammatory cytokines and chemokines, that was largely mitigated by pomalidomide. Results provide evidence of the disease modifying potential of pomalidomide in a neuropathological rodent model of PD and support the repurposing of this drug for clinical testing in PD patients.


Assuntos
Fármacos Neuroprotetores , Doença de Parkinson , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Reposicionamento de Medicamentos , Humanos , Microglia/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/patologia , Ratos , Substância Negra/metabolismo , Talidomida/análogos & derivados , Fator de Necrose Tumoral alfa , alfa-Sinucleína/genética
10.
Cells ; 11(17)2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-36078036

RESUMO

Parkinson's disease (PD) is a complex pathology causing a plethora of non-motor symptoms besides classical motor impairments, including cognitive disturbances. Recent studies in the PD human brain have reported microgliosis in limbic and neocortical structures, suggesting a role for neuroinflammation in the development of cognitive decline. Yet, the mechanism underlying the cognitive pathology is under investigated, mainly for the lack of a valid preclinical neuropathological model reproducing the disease's motor and non-motor aspects. Here, we show that the bilateral intracerebral infusion of pre-formed human alpha synuclein oligomers (H-αSynOs) within the substantia nigra pars compacta (SNpc) offers a valid model for studying the cognitive symptoms of PD, which adds to the classical motor aspects previously described in the same model. Indeed, H-αSynOs-infused rats displayed memory deficits in the two-trial recognition task in a Y maze and the novel object recognition (NOR) test performed three months after the oligomer infusion. In the anterior cingulate cortex (ACC) of H-αSynOs-infused rats the in vivo electrophysiological activity was altered and the expression of the neuron-specific immediate early gene (IEG) Npas4 (Neuronal PAS domain protein 4) and the AMPA receptor subunit GluR1 were decreased. The histological analysis of the brain of cognitively impaired rats showed a neuroinflammatory response in cognition-related regions such as the ACC and discrete subareas of the hippocampus, in the absence of any evident neuronal loss, supporting a role of neuroinflammation in cognitive decline. We found an increased GFAP reactivity and the acquisition of a proinflammatory phenotype by microglia, as indicated by the increased levels of microglial Tumor Necrosis Factor alpha (TNF-α) as compared to vehicle-infused rats. Moreover, diffused deposits of phospho-alpha synuclein (p-αSyn) and Lewy neurite-like aggregates were found in the SNpc and striatum, suggesting the spreading of toxic protein within anatomically interconnected areas. Altogether, we present a neuropathological rat model of PD that is relevant for the study of cognitive dysfunction featuring the disease. The intranigral infusion of toxic oligomeric species of alpha-synuclein (α-Syn) induced spreading and neuroinflammation in distant cognition-relevant regions, which may drive the altered neuronal activity underlying cognitive deficits.


Assuntos
Disfunção Cognitiva , Doença de Parkinson , Animais , Disfunção Cognitiva/metabolismo , Giro do Cíngulo/metabolismo , Giro do Cíngulo/patologia , Humanos , Doenças Neuroinflamatórias , Neurônios/metabolismo , Doença de Parkinson/metabolismo , Ratos , Substância Negra/metabolismo , alfa-Sinucleína/metabolismo
11.
Front Neurosci ; 15: 657714, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33994933

RESUMO

Repurposing ketamine in the therapy of depression could well represent a breakthrough in understanding the etiology of depression. Ketamine was originally used as an anesthetic drug and later its use was extended to other therapeutic applications such as analgesia and the treatment of addiction. At the same time, the abuse of ketamine as a recreational drug has generated a concern for its psychotropic and potential long-term effects; nevertheless, its use as a fast acting antidepressant in treatment-resistant patients has boosted the interest in the mechanism of action both in psychiatry and in the wider area of neuroscience. This article provides a comprehensive overview of the actions of ketamine and intends to cover: (i) the evaluation of its clinical use in the treatment of depression and suicidal behavior; (ii) the potential use of ketamine in pediatrics; (iii) a description of its mechanism of action; (iv) the involvement of specific brain areas in producing antidepressant effects; (v) the potential interaction of ketamine with the hypothalamic-pituitary-adrenal axis; (vi) the effect of ketamine on neuronal transmission in the bed nucleus of stria terminalis and on its output; (vii) the evaluation of any gender-dependent effects of ketamine; (viii) the interaction of ketamine with the inflammatory processes involved in depression; (ix) the evaluation of the effects observed with single or repeated administration; (x) a description of any adverse or cognitive effects and its abuse potential. Finally, this review attempts to assess whether ketamine's use in depression can improve our knowledge of the etiopathology of depression and whether its therapeutic effect can be considered an actual cure for depression rather than a therapy merely aimed to control the symptoms of depression.

12.
Pharmacol Res ; 62(6): 523-9, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20691787

RESUMO

The stimulant methylphenidate and the non-stimulant atomoxetine are widely used for the treatment of Attention-Deficit/Hyperactivity Disorder (ADHD), but the molecular mechanisms of their therapeutic action are not fully understood. The aim of our study was to investigate, in adolescent rats, the sub-chronic effect of these two drugs on neuronal plasticity, through a detailed analysis of BDNF expression and signalling in order to establish the contribution of these mechanisms in the pharmacotherapy of ADHD. Atomoxetine (ATX) up-regulated BDNF mRNA levels in the hippocampus whereas methylphenidate (MPH) increased BDNF gene expression in the nucleus accumbens and caudate-putamen. Opposite effects were seen in the prefrontal cortex, a critical region in attention disorders, where ATX increased while MPH reduced total and exon IV BDNF mRNA levels. Analysis of BDNF-mediated signalling in the prefrontal cortex revealed that ATX enhanced AKT and GSK3ß phosphorylation whereas MPH reduced the synaptic levels of trkB, the high-affinity BDNF receptor, and ERK1/2 activation. Our findings show that ATX and MPH exert an opposite modulation of the BDNF system, primarily in prefrontal cortex that, independently from the behavioral control exerted by the two drugs, may be important for long-term consequences on cognitive function.


Assuntos
Inibidores da Captação Adrenérgica/farmacologia , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Estimulantes do Sistema Nervoso Central/farmacologia , Metilfenidato/farmacologia , Propilaminas/farmacologia , Inibidores da Captação Adrenérgica/uso terapêutico , Animais , Cloridrato de Atomoxetina , Encéfalo/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/genética , Estimulantes do Sistema Nervoso Central/uso terapêutico , Humanos , Masculino , Metilfenidato/uso terapêutico , Propilaminas/uso terapêutico , RNA Mensageiro/genética , Ratos , Ratos Endogâmicos SHR , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
13.
Med Hypotheses ; 140: 109776, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32344313

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a pandemic disease (COVID-19) that has spread globally causing more than 30,000 deaths. Despite the immense and ongoing global effort, no efficacious drugs to fight this plague have been identified and patients admitted to the intensive care units (ICU), for respiratory distress, are managed mostly by means of supportive care based on oxygen maintenance. Several authors have reported that the prevalence of hypertension, diabetes, cardiovascular and cerebrovascular diseases comorbidities were indeed frequent among patients with COVID-19, which suggests that these conditions are likely to aggravate and complicate the prognosis. What the aforementioned diseases have in common is a latent chronic inflammatory state that may be associated with the alteration of laboratory parameters that are typical of the metabolic syndrome and insulin resistance. In severe COVID-19 patients laboratory markers of inflammation such as C-reactive protein, IL-6, D-dimer, serum ferritin and lactate dehydrogenase are elevated in many patients; assessed since the 4th-6th day of illness onset, such increases seem to be predictive of an adverse prognosis. Our hypothesis is that drugs belonging to the family of thiazolidinediones (TZD) such as pioglitazone or rosiglitazone, approved for treating the condition of insulin resistance and the accompanying inflammation, could ameliorate the prognosis of those COVID-19 patients with diabetes, hypertension and cardiovascular disorders comorbidities. TZD are PPARγ agonists that act on nuclear receptors, thereby triggering certain transcription factors. TZD were widely used for type-2 diabetes in the first decade of this century and although concerns have been raised for possible side effects associated with long-term treatment, their use has been recently revaluated for their anti-inflammatory properties in numerous medical conditions.


Assuntos
Infecções por Coronavirus/tratamento farmacológico , Pioglitazona/uso terapêutico , Pneumonia Viral/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Betacoronavirus , Proteína C-Reativa/análise , COVID-19 , Ferritinas/sangue , Produtos de Degradação da Fibrina e do Fibrinogênio/análise , Humanos , Hipertensão , Hipoglicemiantes/uso terapêutico , Incidência , Inflamação/tratamento farmacológico , Resistência à Insulina , Unidades de Terapia Intensiva , Interleucina-6/sangue , L-Lactato Desidrogenase/sangue , Pandemias , Prognóstico , SARS-CoV-2 , Tiazolidinedionas/uso terapêutico , Tratamento Farmacológico da COVID-19
14.
Eur J Neurosci ; 29(5): 954-63, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19245367

RESUMO

Rosiglitazone is a commonly prescribed insulin-sensitizing drug with a selective agonistic activity on the peroxisome proliferator-activated receptor-gamma (PPAR-gamma). PPAR-gamma can modulate inflammatory responses in the brain, and agonists might be beneficial in neurodegenerative diseases. In the present study we used a chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine plus probenecid (MPTPp) mouse model of progressive Parkinson's disease (PD) to assess the therapeutic efficacy of rosiglitazone on behavioural impairment, neurodegeneration and inflammation. Mice chronically treated with MPTPp displayed typical features of PD, including impairment of motor and olfactory functions associated with partial loss of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra pars compacta (SNc), decrease of dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC) content and dynorphin (Dyn) mRNA levels in the caudate-putamen (CPu), intense microglial and astroglial response in the SNc and CPu. Chronic rosiglitazone, administered in association with MPTPp, completely prevented motor and olfactory dysfunctions and loss of TH-positive cells in the SNc. In the CPu, loss of striatal DA was partially prevented, whereas decreases in DOPAC content and Dyn were fully counteracted. Moreover, rosiglitazone completely inhibited microglia reactivity in SNc and CPu, as measured by CD11b immunostaining, and partially inhibited astroglial response assessed by glial fibrillary acidic protein immunoreactivity. Measurement of striatal MPP+ levels 2, 4, 6 h and 3 days after chronic treatment indicated that MPTP metabolism was not altered by rosiglitazone. The results support the use of PPAR-gamma agonists as a putative anti-inflammatory therapy aimed at arresting PD progression, and suggest that assessment in PD clinical trials is warranted.


Assuntos
Intoxicação por MPTP/metabolismo , Intoxicação por MPTP/prevenção & controle , PPAR gama/agonistas , Tiazolidinedionas/uso terapêutico , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Animais , Antígeno CD11b/metabolismo , Catalepsia , Cromatografia Líquida de Alta Pressão/métodos , Doença Crônica , Modelos Animais de Doenças , Dopamina/metabolismo , Interações Medicamentosas , Dinorfinas/genética , Dinorfinas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/metabolismo , Globo Pálido/efeitos dos fármacos , Globo Pálido/metabolismo , Locomoção/efeitos dos fármacos , Intoxicação por MPTP/induzido quimicamente , Intoxicação por MPTP/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , PPAR gama/metabolismo , Desempenho Psicomotor/efeitos dos fármacos , RNA Mensageiro/metabolismo , Rosiglitazona , Olfato/efeitos dos fármacos , Espectrometria de Massas em Tandem/métodos , Tirosina 3-Mono-Oxigenase/metabolismo
15.
Eur J Neurosci ; 28(4): 744-58, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18671739

RESUMO

Gestational stress [prenatal stress (PNS)] has been associated with low birth weight, preterm delivery, and higher vulnerability to psychiatric disorders such as schizophrenia, depression or attention deficit with hyperactivity disorder. The alteration of catecholamine transmission has been attributed a major role in the etiology of psychiatric disturbances. We investigated the effect of PNS on basal and stimulated dopamine and noradrenaline output in the nucleus accumbens of freely moving adolescent and young adult rats (30-35 and 60-70 postnatal days respectively) because of the importance of this area in drug dependence and possibly in psychiatric disorders that are treated with drugs that act on dopamine and noradrenaline transmission. Stimulation was obtained with intraperitoneal amphetamine (0.25 mg/kg) or subcutaneous nicotine (0.4 mg/kg). The results showed the following: (i) basal and amphetamine-stimulated dopamine output in adolescent and adult PNS rats is higher than in controls; (ii) nicotine-stimulated dopamine output is lower than in controls in adolescent but not in adult PNS rats; (iii) basal noradrenaline output is lower than in controls in adolescent but not in adult PNS rats; (iv) amphetamine-stimulated noradrenaline output is higher than in controls in adult but not in adolescent PNS rats; (v) nicotine-stimulated noradrenaline output in PNS rats is higher than in controls, although only in adults. These results show that PNS may produce a complex change in accumbal dopamine and noradrenaline transmission. We discuss the possibility that these changes might be correlated with the development of psychiatric disorders or with an increased vulnerability to drug addiction.


Assuntos
Dopamina/metabolismo , Norepinefrina/metabolismo , Núcleo Accumbens , Efeitos Tardios da Exposição Pré-Natal , Restrição Física , Estresse Psicológico , Adolescente , Adulto , Anfetamina/metabolismo , Animais , Criança , Inibidores da Captação de Dopamina/metabolismo , Feminino , Humanos , Microdiálise , Nicotina/metabolismo , Agonistas Nicotínicos/metabolismo , Núcleo Accumbens/anatomia & histologia , Núcleo Accumbens/metabolismo , Gravidez , Distribuição Aleatória , Ratos , Ratos Wistar
16.
Eur Neuropsychopharmacol ; 26(10): 1678-82, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27569123

RESUMO

Since the therapeutic treatment of depression is far from being satisfactory, new therapeutic strategies ought to be pursued. In addition, further investigation on brain areas involved in the action mechanism of antidepressants can shed light on the aetiology of depression. We have previously reported that typical and atypical antidepressants strongly stimulate catecholamine transmission in the bed nucleus of stria terminalis (BNST). In this study, we have built on that work to examine the effect of ketamine, an unusual antidepressant that can produce a fast-acting and long-lasting antidepressant effect after administration of a single sub-anaesthetic dose. Ketamine is an antagonist of the ionotropic N-methyl-D-aspartate (NMDA) receptor but can also act through its metabolite (2R-6R)-hydroxynorketamine. Using the microdialysis technique in freely moving rats, we monitored the acute effect of ketamine on catecholamine release in the BNST to gain clues to its prompt antidepressant effect. Male Sprague-Dawley rats were implanted with a microdialysis probe in the BNST and 48h later, were injected with ketamine (10, 20, and 40mg/kg, i.p.). Ketamine increased norepinephrine (127%, 155%, 186%) and dopamine (114%, 156%, 176%) extracellular concentration above basal in a time and dose dependent manner, without significantly modifying motility. Since the effect of ketamine, although lower, was not substantially different from that produced by classical antidepressants, we suggest that catecholamine increase in BNST is not likely to be related to a rapid ketamine antidepressant effect, though it might be related to its performance in predictive tests of antidepressant properties.


Assuntos
Antidepressivos de Segunda Geração/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Ketamina/farmacologia , Núcleos Septais/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Animais , Catecolaminas/metabolismo , Relação Dose-Resposta a Droga , Masculino , Atividade Motora/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores
17.
Exp Neurol ; 286: 83-92, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27697481

RESUMO

Neuroinflammation is associated with l-DOPA treatment in Parkinson's disease (PD), suggesting a role in l-DOPA-induced dyskinesia (LID), however it is unclear whether increased inflammation is specifically related to the dyskinetic outcome of l-DOPA treatment. Diversely from oral l-DOPA, continuous intrajejunal l-DOPA infusion is associated with very low dyskinetic outcome in PD patients. We reproduced these regimens of administration in 6-OHDA-lesioned hemiparkinsonian rats, where dyskinetic responses and striatal neuroinflammation induced by chronic pulsatile (DOPAp) or continuous (DOPAc) l-DOPA were compared. Moreover, we investigated the contribution of a peripheral inflammatory challenge with lipopolysaccharide (LPS), to DOPAp-induced dyskinetic and neuroinflammatory responses. Rats 6-OHDA-infused in the medial forebrain bundle received two weeks treatment with DOPAp, DOPAc via subcutaneous osmotic minipumps, or DOPAp followed by DOPAc. l-DOPA plasma levels were measured in all experimental groups. An independent group of rats received one peripheral dose of LPS 24h before DOPAp treatment. Abnormal involuntary movements (AIMs) were evaluated as a rat model of LID. Immunoreactivity (IR) for OX-42, microglial and neuronal TNF-α, iNOS and GFAP was quantified in denervated and contralateral striatum. In addition, serum TNF-α was measured. The 6-OHDA denervation induced a mild microgliosis in the striatum two weeks after neurotoxin infusion, and increased TNF-α IR in microglia. Rats receiving the DOPAp treatment developed AIMs and displayed increased striatal OX-42, microglial TNF-α, iNOS and GFAP. Moreover, TNF-α IR was also increased in a subpopulation of striatal neurons. Conversely, DOPAc did not induce AIMs or inflammatory responses in either drug-naïve animals or rats that were previously dyskinetic when exposed to DOPAp. Serum TNF-α was not altered by any l-DOPA treatment. LPS pre-treatment increased the degree of DOPAp-induced AIMs and striatal IR for OX-42, TNF-α, iNOS and GFAP. Altogether the present findings indicate that in the 6-OHDA model, chronic l-DOPA induces striatal inflammatory responses, which however depend upon the administration regimen and the dyskinetic outcome of drug treatment. The potentiation of dyskinetic responses by LPS suggests a reciprocal causal link between neuroinflammation and LID.


Assuntos
Antiparkinsonianos/efeitos adversos , Discinesia Induzida por Medicamentos/etiologia , Encefalite/induzido quimicamente , Levodopa/efeitos adversos , Doença de Parkinson/tratamento farmacológico , Animais , Antiparkinsonianos/administração & dosagem , Antiparkinsonianos/sangue , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos/efeitos adversos , Lateralidade Funcional/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Levodopa/administração & dosagem , Levodopa/sangue , Lipopolissacarídeos/farmacologia , Masculino , Proteínas do Tecido Nervoso/metabolismo , Oxidopamina/toxicidade , Doença de Parkinson/sangue , Doença de Parkinson/etiologia , Doença de Parkinson/patologia , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Simpatolíticos/toxicidade , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
18.
Neurosci Biobehav Rev ; 27(7): 653-9, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14624809

RESUMO

Spontaneously hypertensive rats (SHR) exhibit behavioural abnormalities (hyperactivity and hyper reactivity to stress) that resemble the behavioural abnormalities of human attention-deficit with hyperactivity disorder (ADHD). Because dopamine has been implicated in ADHD we studied by in vivo microdialysis the dopamine output in the nucleus accumbens (NAc) shell of 6 week-old (pre-hypertensive stage) SHR rats and in their normotensive age matched Wistar Kyoto controls (WKY). We observed that SHR rats had significant higher basal dialysate dopamine concentrations (about 20%) than WKY. Systemic administration of amphetamine (0.25 and 0.5 mg/kg s.c.), and methylphenidate (1 and 2 mg/kg i.p.) produced an higher increase in dialysate dopamine in the NAc shell of SHR rats as compared with WKY rats, although only after the administration of the lowest dose of amphetamine and methylphenidate this difference was found to be significant. In contrast when the microdialysis fiber was perfused by 30 or 60 mM K(+), a lower increase of dialysate dopamine was observed in SHR rats as compared with WKY rats. These apparently contradictory results can be explained by postulating that SHR rats have a higher tone of NAc shell dopamine transmission and synthesis associated with a lower storage capacity of vesicles in dopamine terminals of the same area.


Assuntos
Anfetamina/farmacologia , Inibidores da Captação de Dopamina/farmacologia , Dopamina/metabolismo , Metilfenidato/farmacologia , Núcleo Accumbens/metabolismo , Análise de Variância , Animais , Cocaína/farmacologia , Relação Dose-Resposta a Droga , Líquido Extracelular/química , Masculino , Análise por Pareamento , Potenciais da Membrana/efeitos dos fármacos , Microdiálise , Potássio/farmacologia , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY
19.
Neuropharmacology ; 47 Suppl 1: 227-41, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15464140

RESUMO

Microdialysis studies in animals have shown that addictive drugs preferentially increase extracellular dopamine (DA) in the n. accumbens (NAc). Brain imaging studies, while extending these finding to humans, have shown a correlation between psychostimulant-induced increase of extracellular DA in the striatum and self-reported measures of liking and 'high' (euphoria). Although a correlate of drug reward independent from associative learning and performance is difficult to obtain in animals, conditioned taste avoidance (CTA) might meet these requirements. Addictive drugs induce CTA to saccharin most likely as a result of anticipatory contrast of saccharin over drug reward. Consistently with a role of DA in drug reward, D2 or combined D1/D2 receptor blockade abolishes cocaine, amphetamine and nicotine CTA. Intracranial self-administration studies with mixtures of D1 and D2 receptor agonists point to the NAc shell as the critical site of DA reward. NAc shell DA acting on D1 receptors is also involved in Pavlovian learning through pre-trial and post-trial consolidation mechanisms and in the utilization of spatial short-term memory for goal-directed behavior. Stimulation of NAc shell DA transmission by addictive drugs is shared by a natural reward like food but lacks its adaptive properties (habituation and inhibition by predictive stimuli). These peculiarities of drug-induced stimulation of DA transmission in the NAc shell result in striking differences in the impact of drug-conditioned stimuli on DA transmission. It is speculated that drug addiction results from the impact exerted on behavior by the abnormal DA stimulant properties acquired by drug-conditioned stimuli as a result of their association with addictive drugs.


Assuntos
Dopamina/fisiologia , Núcleo Accumbens/fisiologia , Transtornos Relacionados ao Uso de Substâncias/fisiopatologia , Animais , Nível de Alerta/fisiologia , Condicionamento Clássico/fisiologia , Condicionamento Operante/fisiologia , Dopamina/metabolismo , Espaço Extracelular/metabolismo , Espaço Extracelular/fisiologia , Humanos , Motivação , Núcleo Accumbens/metabolismo , Fosforilação , Transtornos Relacionados ao Uso de Substâncias/metabolismo , Transmissão Sináptica/fisiologia
20.
Crit Rev Neurobiol ; 16(1-2): 121-8, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15581407

RESUMO

Dopamine reuptake by norepinephrine terminals can occur in brain areas such as the prefrontal cortex, the nucleus accumbens shell, and the bed nucleus of stria terminalis that are innervated, although unevenly, by both dopamine and norepinephrine neurons. Therefore the antidepressants that bind selectively the norepinephrine transporter might produce their therapeutic effect by raising the extracellular concentration of dopamine besides that of norepinephrine. Moreover, cocaine can be reinforcing even in knock-out mice for the dopamine transporter because it might raise synaptic dopamine in the nucleus accumbens shell by preventing its uptake by the norepinephrine transporter, an effect that could take place even in wild animals. Recently, it has also been suggested that dopamine can be co-released with norepinephrine by norepinephrine neurons, although it is not clear whether this feature might be related to a previous nonspecific uptake of dopamine by the norepinephrine transporter. In this review we discuss the potential role of the nonspecific uptake of dopamine by norepinephrine transporter in the mechanism of action of drugs of abuse, antipsychotics, and antidepressants.


Assuntos
Dopamina/metabolismo , Neurônios/fisiologia , Norepinefrina/fisiologia , Animais , Antidepressivos/farmacologia , Antipsicóticos/farmacologia , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Proteínas da Membrana Plasmática de Transporte de Dopamina , Inibidores da Captação de Dopamina/farmacologia , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Knockout , Terminações Nervosas/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Norepinefrina/metabolismo , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/metabolismo , Ratos , Transtornos Relacionados ao Uso de Substâncias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA