Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Mark Access Health Policy ; 12(2): 105-117, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38808313

RESUMO

BACKGROUND: Real-world evidence (RWE) can reinforce clinical trial evidence in health technology assessment (HTA). OBJECTIVES: Review HTA bodies' (HTAbs) requirements for RWE, real uses, and acceptance across seven countries (Brazil, Canada, France, Germany, Italy, Spain, and the United Kingdom) and outline recommendations that may improve acceptance of RWE in efficacy/effectiveness assessments and appraisals processes. METHODS: RWE requirements were summarized based on HTAbs' guidelines. Acceptance by HTAbs was evaluated based on industry experience and case studies. RESULTS: As of June 2022, RWE methodological guidelines were in place in three of the seven countries. HTAbs typically requested analyses based on local data sources, but the preferred study design and data sources differed. HTAbs had individual submission, assessment, and appraisal processes; some allowed early meetings for the protocol and/or results validation, though few involved external experts or medical societies to provide input to assessment and appraisal. The extent of submission, assessment, and appraisal requirements did not necessarily reflect the degree of acceptance. CONCLUSION: All the countries reviewed face common challenges regarding the use of RWE. Our proposals address the need to facilitate collaboration and communication with industry and regulatory agencies and the need for specific guidelines describing RWE design and criteria of acceptance throughout the assessment and appraisal processes.

2.
Animals (Basel) ; 13(4)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36830424

RESUMO

The effects of yeast cell wall compounds (YCWs) being added to cat food on hindgut fermentation metabolites and fecal microbiota were assessed in in vivo Experiment 1 (Exp. 1) and in vitro Experiments 2 and 3 (Exp. 2 and 3). In Exp. 1, the cats' diets were supplemented with two dietary concentrations (46.2 and 92.4 ppm) of YCWs (YCW-15 and YCW-30, respectively), and a negative control diet with no compound in three groups (six cats per group) was used to assess the fecal score, pH, digestibility, fermentation products, and microbiota. In Exp. 2, feces from the cats that were not supplemented with YCWs (control) were used as an inoculum. A blend of pectin, amino acids, and cellulose was used as a substrate, and the YCW compound was added at two levels (5 and 10 mg). In Exp. 3, feces from cats fed YCWs were used as an inoculum to test three different substrates (pectin, amino acids, and cellulose). In Exp. 2 and 3, the gas production, pH, and fermentation products (ammonia, SCFAs, and BCFAs) were assessed. YCW-30 resulted in a higher digestibility coefficient of the crude protein, organic matter (OM) (p < 0.05), and energy of the diet (p < 0.10). Regarding the fermentation products, YCW-15 showed a trend toward higher concentrations of propionate, acetate, lactate, ammonia, isobutyrate, and valerate, while YCW-30 showed a trend (p < 0.10) toward higher levels of butyrate and pH values. The bacteroidia class and the genus Prevotella were increased by using YCW-30 and the control. At the gender level, decreased (p < 0.01) Megasphaera was observed with YCW inclusion. The microbiota differed (p < 0.01) among the groups in their Shannon indexes. For beta diversity, YCW-30 showed higher indexes (p = 0.008) than the control. The microbiota metabolic profile differed in the pathway CENTFERM-PWY; it was more expressed in YCW-30 compared to the control. In Exp. 2, the YCWs showed a higher ratio (p = 0.006) of the fermentation products in the treatments with additives with a trend towards a high dose of the additive (10 mg). In Exp. 3, the effects of the substrates (p < 0.001), but not of the YCWs, on the fermentation products were observed, perhaps due to the low dietary concentrations we used. However, the marked responses of the fermentation products to the substrates validated the methodology. We could conclude that the YCWs, even at low dietary concentrations, affected fecal SCFA production, reduced the fecal pH, and modulated the fecal microbiota in the cats. These responses were more pronounced under in vitro conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA