Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 196
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Brain Behav Immun ; 115: 680-695, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37972878

RESUMO

There is a strong male bias in the prevalence of many neurodevelopmental disorders such as autism spectrum disorder. However, the mechanisms underlying this sex bias remain elusive. Infection during the perinatal period is associated with an increased risk of neurodevelopmental disorder development. Here, we used a mouse model of early-life immune activation that reliably induces deficits in social behaviors only in males. We demonstrate that male-biased alterations in social behavior are dependent upon microglial immune signaling and are coupled to alterations in mitochondrial morphology, gene expression, and function specifically within microglia, the innate immune cells of the brain. Additionally, we show that this behavioral and microglial mitochondrial vulnerability to early-life immune activation is programmed by the male-typical perinatal gonadal hormone surge. These findings demonstrate that social behavior in males over the lifespan are regulated by microglia-specific mechanisms that are shaped by events that occur in early development.


Assuntos
Transtorno do Espectro Autista , Microglia , Animais , Camundongos , Gravidez , Feminino , Masculino , Microglia/metabolismo , Encéfalo/metabolismo , Hormônios Gonadais/metabolismo , Mitocôndrias/metabolismo
2.
Cell ; 137(4): 761-72, 2009 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19450521

RESUMO

The transient receptor potential channel 5 (TRPC5) is predominantly expressed in the brain where it can form heterotetrameric complexes with TRPC1 and TRPC4 channel subunits. These excitatory, nonselective cationic channels are regulated by G protein, phospholipase C-coupled receptors. Here, we show that TRPC5(-/-) mice exhibit diminished innate fear levels in response to innately aversive stimuli. Moreover, mutant mice exhibited significant reductions in responses mediated by synaptic activation of Group I metabotropic glutamate and cholecystokinin 2 receptors in neurons of the amygdala. Synaptic strength at afferent inputs to the amygdala was diminished in P10-P13 null mice. In contrast, baseline synaptic transmission, membrane excitability, and spike timing-dependent long-term potentiation at cortical and thalamic inputs to the amygdala were largely normal in older null mice. These experiments provide genetic evidence that TRPC5, activated via G protein-coupled neuronal receptors, has an essential function in innate fear.


Assuntos
Tonsila do Cerebelo/fisiologia , Medo , Canais de Cátion TRPC/fisiologia , Animais , Encéfalo , Condicionamento Psicológico , Potenciação de Longa Duração , Masculino , Camundongos , Camundongos Knockout , Receptores de Glutamato Metabotrópico/fisiologia , Transmissão Sináptica , Canais de Cátion TRPC/genética
3.
J Cogn Neurosci ; 34(5): 864-876, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35195725

RESUMO

Errors in performance trigger cognitive and neural changes that are implemented to adaptively adjust to fluctuating demands. Error-related alpha suppression (ERAS)-which refers to decreased power in the alpha frequency band after an incorrect response-is thought to reflect cognitive arousal after errors. Much of this work has been correlational, however, and there are no direct investigations into its pharmacological sensitivity. In Study 1 (n = 61), we evaluated the presence and scalp distribution of ERAS in a novel flanker task specifically developed for cross-species assessments. Using this same task in Study 2 (n = 26), which had a placebo-controlled within-subject design, we evaluated the sensitivity of ERAS to placebo (0 mg), low (100 mg), and high (200 mg) doses of modafinil, a wakefulness promoting agent. Consistent with previous work, ERAS was maximal at parieto-occipital recording sites in both studies. In Study 2, modafinil did not have strong effects on ERAS (a significant Accuracy × Dose interaction emerged, but drug-placebo differences did not reach statistical significance after correction for multiple comparisons and was absent after controlling for accuracy rate). ERAS was correlated with accuracy rates in both studies. Thus, modafinil did not impact ERAS as hypothesized, and findings indicate ERAS may reflect an orienting response to infrequent events.


Assuntos
Compostos Benzidrílicos , Couro Cabeludo , Nível de Alerta , Compostos Benzidrílicos/farmacologia , Compostos Benzidrílicos/uso terapêutico , Método Duplo-Cego , Humanos , Modafinila/farmacologia , Modafinila/uso terapêutico , Vigília
4.
Behav Pharmacol ; 33(2&3): 195-205, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35288510

RESUMO

Cessation of cannabinoid use in humans often leads to a withdrawal state that includes sleep disruption. Despite important health implications, little is known about how cannabinoid abstention affects sleep architecture, in part because spontaneous cannabinoid withdrawal is difficult to model in animals. In concurrent work we report that repeated administration of the high-efficacy cannabinoid 1 (CB1) receptor agonist AM2389 to mice for 5 days led to heightened locomotor activity and paw tremor following treatment discontinuation, potentially indicative of spontaneous cannabinoid withdrawal. Here, we performed parallel studies to examine effects on sleep. Using implantable electroencephalography (EEG) and electromyography (EMG) telemetry we examined sleep and neurophysiological measures before, during, and after 5 days of twice-daily AM2389 injections. We report that AM2389 produces decreases in locomotor activity that wane with repeated treatment, whereas discontinuation produces rebound increases in activity that persist for several days. Likewise, AM2389 initially produces profound increases in slow-wave sleep (SWS) and decreases in rapid eye movement (REM) sleep, as well as consolidation of sleep. By the third AM2389 treatment, this pattern transitions to decreases in SWS and total time sleeping. This pattern persists following AM2389 discontinuation and is accompanied by emergence of sleep fragmentation. Double-labeling immunohistochemistry for hypocretin/orexin (a sleep-regulating peptide) and c-Fos (a neuronal activity marker) in lateral hypothalamus revealed decreases in c-Fos/orexin+ cells following acute AM2389 and increases following discontinuation, aligning with the sleep changes. These findings indicate that AM2389 profoundly alters sleep in mice and suggest that sleep disruption following treatment cessation reflects spontaneous cannabinoid withdrawal.


Assuntos
Canabinoides , Animais , Agonistas de Receptores de Canabinoides/farmacologia , Canabinoides/farmacologia , Eletroencefalografia , Masculino , Camundongos , Orexinas , Sono , Sono REM/fisiologia
5.
Mol Psychiatry ; 25(10): 2330-2341, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-30610201

RESUMO

Immune activation during pregnancy via infection or autoimmune disease is a risk factor for neuropsychiatric illness. Mouse models of prenatal immune activation often involve maternal administration of agents that activate toll-like receptors (TLRs), a class of pattern recognition receptors that initiate innate immune responses. Such studies have focused primarily on activating the TLR3 or TLR4 subtypes, to mimic immune responses to viral or bacterial infections, respectively. Here, we characterize the effects of prenatal activation of TLR7, which is implicated in the pathogenesis of autoimmune disease. Prenatal TLR7 activation via administration of the selective agonist imiquimod (5.0 mg/kg) induces a phenotype in offspring characterized by reduced anxiety-like behavior, fragmented social behavior, and altered ultrasonic vocalization patterns at 6-12 weeks of age. The characteristics of this phenotype are readily distinguishable from-and in some ways opposite to-those seen following prenatal activation of TLR3 and/or TLR4. Prenatal TLR7-activated mice have normal baseline locomotor activity, but are hyperresponsive to stimuli including social partners, circadian cues, and gonadal hormone fluctuations. These alterations are accompanied by decreases in microglia density but increases in ramifications. RNA-sequencing of dorsal striatum, a region showing profound changes in microglial markers, indicates that prenatal TLR7 activation induces differential expression of hundreds of genes at 13 weeks of age, with virtually no overlap in differentially expressed genes between males and females. Our findings demonstrate that prenatal immune activation can promote a wide range of developmental trajectories, depending on the type and/or pattern of TLR activation and the sex of the offspring.


Assuntos
Feto , Imunidade Inata , Glicoproteínas de Membrana , Caracteres Sexuais , Receptor 7 Toll-Like , Animais , Citocinas , Feminino , Feto/imunologia , Masculino , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Efeitos Tardios da Exposição Pré-Natal/imunologia , Receptor 7 Toll-Like/imunologia
6.
Int J Neuropsychopharmacol ; 23(7): 469-479, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32242615

RESUMO

BACKGROUND: Tobacco use is prevalent in individuals who are routinely exposed to stress. However, little is known about how nicotine affects responses to trauma. We examined in rats how nicotine exposure affects fear conditioning, a procedure often used to study stress-related psychiatric illness. METHODS: We examined 2 methods of nicotine exposure: self-administration, modeling voluntary use, and experimenter-programmed subcutaneous administration, modeling medicinal administration (nicotine patch). For self-administered nicotine, rats trained to self-administer nicotine i.v. were fear conditioned (via light cue preceding foot-shock) either immediately after a 12-hour self-administration session or 12 hours later during a period with somatic signs of nicotine withdrawal. For experimenter-delivered nicotine, rats were conditioned after 1-21 days of nicotine delivered by programmable (12 hours on) subcutaneous mini-pumps. Tests to evaluate acoustic startle responses to the conditioning environment (context-potentiated startle) and in the presence or absence of the light cue (fear-potentiated startle) occurred after a 10-day period. RESULTS: Rats fear conditioned immediately after nicotine self-administration showed reduced responses to the shock-associated context, whereas those trained during nicotine withdrawal showed exaggerated responses. Experimenter-programmed nicotine produced effects qualitatively similar to those seen with self-administered nicotine. CONCLUSIONS: Self-administration or experimenter-programmed delivery of nicotine immediately before exposure to aversive events can reduce conditioned fear responses. In contrast, exposure to aversive events during nicotine withdrawal exacerbates fear responses. These studies raise the possibility of developing safe and effective methods to deliver nicotine or related drugs to mitigate the effects of stress while also highlighting the importance of preventing withdrawal in nicotine-dependent individuals.


Assuntos
Medo/psicologia , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Síndrome de Abstinência a Substâncias/psicologia , Tabagismo/psicologia , Estimulação Acústica , Animais , Condicionamento Clássico , Sinais (Psicologia) , Bombas de Infusão Implantáveis , Injeções Intravenosas , Injeções Subcutâneas , Luz , Masculino , Ratos , Ratos Long-Evans , Reflexo de Sobressalto/efeitos dos fármacos , Autoadministração , Tabagismo/fisiopatologia
7.
J Neurosci ; 38(13): 3358-3372, 2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29491010

RESUMO

Inflammatory processes may be involved in the pathophysiology of neuropsychiatric illnesses including autism spectrum disorder (ASD). Evidence from studies in rodents indicates that immune activation during early development can produce core features of ASD (social interaction deficits, dysregulation of communication, increases in stereotyped behaviors, and anxiety), although the neural mechanisms of these effects are not thoroughly understood. We treated timed-pregnant mice with polyinosinic:polycytidylic acid (Poly I:C), which simulates a viral infection, or vehicle on gestational day 12.5 to produce maternal immune activation (MIA). Male offspring received either vehicle or lipopolysaccharide, which simulates a bacterial infection, on postnatal day 9 to produce postnatal immune activation (PIA). We then used optogenetics to address the possibility that early developmental immune activation causes persistent alterations in the flow of signals within the mPFC to basolateral amygdala (BLA) pathway, a circuit implicated in ASD. We found that our MIA regimen produced increases in synaptic strength in glutamatergic projections from the mPFC to the BLA. In contrast, our PIA regimen produced decreases in feedforward GABAergic inhibitory postsynaptic responses resulting from activation of local circuit interneurons in the BLA by mPFC-originating fibers. Both effects were seen together when the regimens were combined. Changes in the balance between excitation and inhibition were differentially translated into the modified spike output of BLA neurons. Our findings raise the possibility that prenatal and postnatal immune activation may affect different cellular targets within brain circuits that regulate some of the core behavioral signs of conditions such as ASD.SIGNIFICANCE STATEMENT Immune system activation during prenatal and early postnatal development may contribute to the development of autism spectrum disorder (ASD). Combining optogenetic approaches and behavioral assays that reflect core features of ASD (anxiety, decreased social interactions), we uncovered mechanisms by which the ASD-associated behavioral impairments induced by immune activation could be mediated at the level of interactions within brain circuits implicated in control of emotion and motivation (mPFC and BLA, specifically). Here, we present evidence that prenatal and postnatal immune activation can have different cellular targets in the brain, providing support to the notion that the etiology of ASD may be linked to the excitation/inhibition imbalance in the brain affecting the signal flow within relevant behavior-driving neural microcircuits.


Assuntos
Tonsila do Cerebelo/fisiopatologia , Transtorno do Espectro Autista/imunologia , Córtex Pré-Frontal/fisiopatologia , Efeitos Tardios da Exposição Pré-Natal/imunologia , Transmissão Sináptica , Tonsila do Cerebelo/imunologia , Animais , Transtorno do Espectro Autista/etiologia , Transtorno do Espectro Autista/fisiopatologia , Feminino , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/fisiologia , Interneurônios/metabolismo , Interneurônios/fisiologia , Lipopolissacarídeos/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Córtex Pré-Frontal/imunologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/etiologia , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia
8.
Neurobiol Learn Mem ; 157: 24-34, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30458282

RESUMO

The stress-related neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) is implicated in neuromodulation of learning and memory. PACAP can alter synaptic plasticity and has direct actions on neurons in the amygdala and hippocampus that could contribute to its acute and persistent effects on the consolidation and expression of conditioned fear. We recently demonstrated that intracerebroventricular (ICV) infusion of PACAP prior to fear conditioning (FC) results in initial amnestic-like effects followed by hyper-expression of conditioned freezing with repeated testing, and analyses of immediate-early gene c-Fos expression suggested that the central nucleus of the amygdala (CeA), but not the lateral/basolateral amygdala (LA/BLA) or hippocampus, are involved in these PACAP effects. Here, we extend that work by examining the expression of the synaptic plasticity marker activity-regulated cytoskeleton-associated protein (Arc/Arg 3.1) after PACAP administration and FC. Male Sprague-Dawley rats were implanted with cannula for ICV infusion of PACAP-38 (1.5 µg) or vehicle followed by FC and tests for conditioned freezing. One hour after FC, Arc protein expression was significantly elevated in the CeA and bed nucleus of the stria terminalis (BNST), interconnected structures that are key elements of the extended amygdala, in rats that received the combination of PACAP + FC. In contrast, Arc expression within the subdivisions of the hippocampus, or the LA/BLA, were unchanged. A subpopulation of Arc-positive cells in both the CeA and BNST also express PKCdelta, an intracellular marker that has been used to identify microcircuits that gate conditioned fear in the CeA. Consistent with our previous findings, on the following day conditioned freezing behavior was reduced in rats that had been given the combination of PACAP + FC-an amnestic-like effect-and Arc expression levels had returned to baseline. Given the established role of Arc in modifying synaptic plasticity and memory formation, our findings suggest that PACAP-induced overexpression of Arc following fear conditioning may disrupt neuroplastic changes within populations of CeA and BNST neurons normally responsible for encoding fear-related cues that, in this case, results in altered fear memory consolidation. Hence, PACAP systems may represent an axis on which stress and experience-driven neurotransmission converge to alter emotional memory, and mediate pathologies that are characteristic of psychiatric illnesses such as post-traumatic stress disorder.


Assuntos
Tonsila do Cerebelo/metabolismo , Proteínas do Citoesqueleto/metabolismo , Medo/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Núcleos Septais/metabolismo , Tonsila do Cerebelo/efeitos dos fármacos , Animais , Condicionamento Clássico , Masculino , Plasticidade Neuronal , Neurônios/efeitos dos fármacos , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/administração & dosagem , Ratos Sprague-Dawley , Núcleos Septais/efeitos dos fármacos
9.
Int J Neuropsychopharmacol ; 22(11): 735-745, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31613314

RESUMO

BACKGROUND: New treatments for stress-related disorders including depression, anxiety, and substance use disorder are greatly needed. Kappa opioid receptors are expressed in the central nervous system, including areas implicated in analgesia and affective state. Although kappa opioid receptor agonists share the antinociceptive effects of mu opioid receptor agonists, they also tend to produce negative affective states. In contrast, selective kappa opioid receptor antagonists have antidepressant- and anxiolytic-like effects, stimulating interest in their therapeutic potential. The prototypical kappa opioid receptor antagonists (e.g., norBNI, JDTic) have an exceptionally long duration of action that complicates their use in humans, particularly in tests to establish safety. This study was designed to test dose- and time-course effects of novel kappa opioid receptor antagonists with the goal of identifying short-acting lead compounds for future medication development. METHODS: We screened 2 novel, highly selective kappa opioid receptor antagonists (CYM-52220 and CYM-52288) with oral efficacy in the warm water tail flick assay in rats to determine initial dose and time course effects. For comparison, we tested existing kappa opioid receptor antagonists JDTic and LY-2456302 (also known as CERC-501 or JNJ-67953964). RESULTS: In the tail flick assay, the rank order of duration of action for the antagonists was LY-2456302 < CYM-52288 < CYM-52220 << JDTic. Furthermore, LY-2456302 blocked the depressive (anhedonia-producing) effects of the kappa opioid receptor agonist U50,488 in the intracranial self-stimulation paradigm, albeit at a higher dose than that needed for analgesic blockade in the tail flick assay. CONCLUSIONS: These results suggest that structurally diverse kappa opioid receptor antagonists can have short-acting effects and that LY-2456302 reduces anhedonia as measured in the intracranial self-stimulation test.


Assuntos
(trans)-Isômero de 3,4-dicloro-N-metil-N-(2-(1-pirrolidinil)-ciclo-hexil)-benzenoacetamida/farmacologia , Analgésicos não Narcóticos/farmacologia , Ansiolíticos/farmacologia , Antidepressivos/farmacologia , Comportamento Animal/efeitos dos fármacos , Benzamidas/farmacologia , Antagonistas de Entorpecentes/farmacologia , Piperidinas/farmacologia , Pirrolidinas/farmacologia , Receptores Opioides kappa/antagonistas & inibidores , Tetra-Hidroisoquinolinas/farmacologia , (trans)-Isômero de 3,4-dicloro-N-metil-N-(2-(1-pirrolidinil)-ciclo-hexil)-benzenoacetamida/administração & dosagem , Analgésicos não Narcóticos/administração & dosagem , Animais , Ansiolíticos/administração & dosagem , Antidepressivos/administração & dosagem , Benzamidas/administração & dosagem , Desenvolvimento de Medicamentos , Avaliação Pré-Clínica de Medicamentos , Masculino , Antagonistas de Entorpecentes/administração & dosagem , Piperidinas/administração & dosagem , Pirrolidinas/administração & dosagem , Ratos , Ratos Sprague-Dawley , Receptores Opioides kappa/agonistas , Tetra-Hidroisoquinolinas/administração & dosagem
10.
Addict Biol ; 24(1): 40-50, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29168271

RESUMO

Both schizophrenia (SZ) and substance abuse (SA) exhibit significant heritability. Moreover, N-methyl-d-aspartate receptors (NMDARs) have been implicated in the pathophysiology of both SZ and SA. We hypothesize that the high prevalence of comorbid SA in SZ is due to dysfunction of NMDARs caused by shared risk genes. We used transgenic mice with a null mutation of the gene encoding serine racemase (SR), the enzyme that synthesizes the NMDAR co-agonist d-serine and an established risk gene for SZ, to recreate the pathology of SZ. We determined the effect of NMDAR hypofunction resulting from the absence of d-serine on motivated behavior by using intracranial self-stimulation and neurotransmitter release in the nucleus accumbens by using in vivo microdialysis. Compared with wild-type mice, SR-/- mice exhibited similar baseline intracranial self-stimulation thresholds but were less sensitive to the threshold-lowering (rewarding) and the performance-elevating (stimulant) effects of cocaine. While basal dopamine (DA) and glutamate release were elevated in the nucleus accumbens of SR-/- mice, cocaine-induced increases in DA and glutamate release were blunted. γ-Amino-butyric acid efflux was unaffected in the SR-/- mice. Together, these findings suggest that the impaired NMDAR function and a consequent decrease in sensitivity to cocaine effects on behavior are mediated by blunted DA and glutamate responses normally triggered by the drug. Projected to humans, NMDAR hypofunction due to mutations in SR or other genes impacting glutamatergic function in SZ may render abused substances less potent and effective, thus requiring higher doses to achieve a hedonic response, resulting in elevated drug exposure and increased dependence/addiction.


Assuntos
Cocaína/farmacologia , Inibidores da Captação de Dopamina/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Racemases e Epimerases/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Esquizofrenia/genética , Autoestimulação/efeitos dos fármacos , Transtornos Relacionados ao Uso de Substâncias/metabolismo , Animais , Comorbidade , Dopamina/metabolismo , Ácido Glutâmico/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Camundongos , Camundongos Knockout , Microdiálise , Núcleo Accumbens/metabolismo , Receptores de N-Metil-D-Aspartato/agonistas , Esquizofrenia/metabolismo , Serina/metabolismo , Ácido gama-Aminobutírico/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo
11.
J Neurosci ; 37(32): 7656-7668, 2017 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-28674176

RESUMO

Stress plays a critical role in the neurobiology of mood and anxiety disorders. Sleep and circadian rhythms are affected in many of these conditions. Here we examined the effects of chronic social defeat stress (CSDS), an ethological form of stress, on sleep and circadian rhythms. We exposed male mice implanted with wireless telemetry transmitters to a 10 day CSDS regimen known to produce anhedonia (a depressive-like effect) and social avoidance (an anxiety-like effect). EEG, EMG, body temperature, and locomotor activity data were collected continuously during the CSDS regimen and a 5 day recovery period. CSDS affected numerous endpoints, including paradoxical sleep (PS) and slow-wave sleep (SWS), as well as the circadian rhythmicity of body temperature and locomotor activity. The magnitude of the effects increased with repeated stress, and some changes (PS bouts, SWS time, body temperature, locomotor activity) persisted after the CSDS regimen had ended. CSDS also altered mRNA levels of the circadian rhythm-related gene mPer2 within brain areas that regulate motivation and emotion. Administration of the κ-opioid receptor (KOR) antagonist JDTic (30 mg/kg, i.p.) before CSDS reduced stress effects on both sleep and circadian rhythms, or hastened their recovery, and attenuated changes in mPer2 Our findings show that CSDS produces persistent disruptions in sleep and circadian rhythmicity, mimicking attributes of stress-related conditions as they appear in humans. The ability of KOR antagonists to mitigate these disruptions is consistent with previously reported antistress effects. Studying homologous endpoints across species may facilitate the development of improved treatments for psychiatric illness.SIGNIFICANCE STATEMENT Stress plays a critical role in the neurobiology of mood and anxiety disorders. We show that chronic social defeat stress in mice produces progressive alterations in sleep and circadian rhythms that resemble features of depression as it appears in humans. Whereas some of these alterations recover quickly upon cessation of stress, others persist. Administration of a kappa-opioid receptor (KOR) antagonist reduced stress effects or hastened recovery, consistent with the previously reported antistress effects of this class of agents. Use of endpoints, such as sleep and circadian rhythm, that are homologous across species will facilitate the implementation of translational studies that better predict clinical outcomes in humans, improve the success of clinical trials, and facilitate the development of more effective therapeutics.


Assuntos
Ritmo Circadiano/fisiologia , Piperidinas/farmacologia , Receptores Opioides kappa/antagonistas & inibidores , Receptores Opioides kappa/fisiologia , Sono/fisiologia , Estresse Psicológico/fisiopatologia , Tetra-Hidroisoquinolinas/farmacologia , Animais , Ritmo Circadiano/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Piperidinas/uso terapêutico , Distribuição Aleatória , Sono/efeitos dos fármacos , Comportamento Social , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/psicologia , Tetra-Hidroisoquinolinas/uso terapêutico
12.
J Neurosci ; 36(21): 5748-62, 2016 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-27225765

RESUMO

UNLABELLED: Dependence is a hallmark feature of opiate addiction and is defined by the emergence of somatic and affective withdrawal signs. The nucleus accumbens (NAc) integrates dopaminergic and glutamatergic inputs to mediate rewarding and aversive properties of opiates. Evidence suggests that AMPA glutamate-receptor-dependent synaptic plasticity within the NAc underlies aspects of addiction. However, the degree to which NAc AMPA receptors (AMPARs) contribute to somatic and affective signs of opiate withdrawal is not fully understood. Here, we show that microinjection of the AMPAR antagonist NBQX into the NAc shell of morphine-dependent rats prevented naloxone-induced conditioned place aversions and decreases in sensitivity to brain stimulation reward, but had no effect on somatic withdrawal signs. Using a protein cross-linking approach, we found that the surface/intracellular ratio of NAc GluA1, but not GluA2, increased with morphine treatment, suggesting postsynaptic insertion of GluA2-lacking AMPARs. Consistent with this, 1-naphthylacetyl spermine trihydrochloride (NASPM), an antagonist of GluA2-lacking AMPARs, attenuated naloxone-induced decreases in sensitivity to brain stimulation reward. Naloxone decreased the surface/intracellular ratio and synaptosomal membrane levels of NAc GluA1 in morphine-dependent rats, suggesting a compensatory removal of AMPARs from synaptic zones. Together, these findings indicate that chronic morphine increases synaptic availability of GluA1-containing AMPARs in the NAc, which is necessary for triggering negative-affective states in response to naloxone. This is broadly consistent with the hypothesis that activation of NAc neurons produces acute aversive states and raises the possibility that inhibiting AMPA transmission selectively in the NAc may have therapeutic value in the treatment of addiction. SIGNIFICANCE STATEMENT: Morphine dependence and withdrawal result in profound negative-affective states that play a major role in the maintenance of addiction. However, the underlying neurobiological mechanisms are not fully understood. We use a rat model of morphine dependence to show that GluA1 subunits of AMPA glutamate receptors in the nucleus accumbens (NAc), a brain region critical for modulating affective states, are necessary for aversive effects of morphine withdrawal. Using biochemical methods in NAc tissue, we show that morphine dependence increases cell surface expression of GluA1, suggesting that neurons in this area are primed for increased AMPA receptor activation upon withdrawal. This work is important because it suggests that targeting AMPA receptor trafficking and activation could provide novel targets for addiction treatment.


Assuntos
Transtornos do Humor/induzido quimicamente , Transtornos do Humor/metabolismo , Dependência de Morfina/metabolismo , Morfina/intoxicação , Núcleo Accumbens/metabolismo , Receptores de AMPA/metabolismo , Síndrome de Abstinência a Substâncias/metabolismo , Animais , Masculino , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual
13.
J Neurosci ; 36(38): 9937-48, 2016 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-27656031

RESUMO

UNLABELLED: The dynorphin (DYN)/kappa-opioid receptor (KOR) system plays a conserved role in stress-induced reinstatement of drug seeking for prototypical substances of abuse. Due to nicotine's high propensity for stress-induced relapse, we hypothesized that stress would induce reinstatement of nicotine seeking-like behavior in a KOR-dependent manner. Using a conditioned place preference (CPP) reinstatement procedure in mice, we show that both foot-shock stress and the pharmacological stressor yohimbine (2 mg/kg, i.p.) induce reinstatement of nicotine CPP in a norbinaltorphimine (norBNI, a KOR antagonist)-sensitive manner, indicating that KOR activity is necessary for stress-induced nicotine CPP reinstatement. After reinstatement testing, we visualized robust c-fos expression in the basolateral amygdala (BLA), which was reduced in mice pretreated with norBNI. We then used several distinct but complementary approaches of locally disrupting BLA KOR activity to assess the role of KORs and KOR-coupled intracellular signaling cascades on reinstatement of nicotine CPP. norBNI injected locally into the BLA prevented yohimbine-induced nicotine CPP reinstatement without affecting CPP acquisition. Similarly, selective deletion of BLA KORs in KOR conditional knock-out mice prevented foot-shock-induced CPP reinstatement. Together, these findings strongly implicate BLA KORs in stress-induced nicotine seeking-like behavior. In addition, we found that chemogenetic activation of Gαi signaling within CaMKIIα BLA neurons was sufficient to induce nicotine CPP reinstatement, identifying an anatomically specific intracellular mechanism by which stress leads to reinstatement. Considered together, our findings suggest that activation of the DYN/KOR system and Gαi signaling within the BLA is both necessary and sufficient to produce reinstatement of nicotine preference. SIGNIFICANCE STATEMENT: Considering the major impact of nicotine use on human health, understanding the mechanisms by which stress triggers reinstatement of drug-seeking behaviors is particularly pertinent to nicotine. The dynorphin (DYN)/kappa-opioid receptor (KOR) system has been implicated in stress-induced reinstatement of drug seeking for other commonly abused drugs. However, the specific role, brain region, and mechanisms that this system plays in reinstatement of nicotine seeking has not been characterized. Here, we report region-specific engagement of the DYN/KOR system and subsequent activation of inhibitory (Gi-linked) intracellular signaling pathways within the basolateral amygdala during stress-induced reinstatement of nicotine preference. We show that the DYN/KOR system is necessary to produce this behavioral state. This work may provide novel insight for the development of therapeutic approaches to prevent stress-related nicotine relapse.


Assuntos
Complexo Nuclear Basolateral da Amígdala/metabolismo , Comportamento de Procura de Droga/efeitos dos fármacos , Dinorfinas/metabolismo , Nicotina/administração & dosagem , Agonistas Nicotínicos/administração & dosagem , Receptores Opioides kappa/metabolismo , Reforço Psicológico , Antagonistas de Receptores Adrenérgicos alfa 2/farmacologia , Animais , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Clozapina/análogos & derivados , Clozapina/farmacologia , Condicionamento Operante/fisiologia , Dinorfinas/genética , Extinção Psicológica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Naltrexona/análogos & derivados , Naltrexona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Receptores Opioides kappa/genética , Ioimbina/farmacologia
14.
Proc Natl Acad Sci U S A ; 111(16): E1648-55, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24706819

RESUMO

Hypocretin (orexin) and dynorphin are neuropeptides with opposing actions on motivated behavior. Orexin is implicated in states of arousal and reward, whereas dynorphin is implicated in depressive-like states. We show that, despite their opposing actions, these peptides are packaged in the same synaptic vesicles within the hypothalamus. Disruption of orexin function blunts the rewarding effects of lateral hypothalamic (LH) stimulation, eliminates cocaine-induced impulsivity, and reduces cocaine self-administration. Concomitant disruption of dynorphin function reverses these behavioral changes. We also show that orexin and dynorphin have opposing actions on excitability of ventral tegmental area (VTA) dopamine neurons, a prominent target of orexin-containing neurons, and that intra-VTA orexin antagonism causes decreases in cocaine self-administration and LH self-stimulation that are reversed by dynorphin antagonism. Our findings identify a unique cellular process by which orexin can occlude the reward threshold-elevating effects of coreleased dynorphin and thereby act in a permissive fashion to facilitate reward.


Assuntos
Dinorfinas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neuropeptídeos/metabolismo , Neurotransmissores/metabolismo , Recompensa , Área Tegmentar Ventral/metabolismo , Animais , Cocaína/administração & dosagem , Cocaína/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Dinorfinas/antagonistas & inibidores , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Comportamento Impulsivo/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuropeptídeos/antagonistas & inibidores , Receptores de Orexina/metabolismo , Orexinas , Autoadministração , Transmissão Sináptica/efeitos dos fármacos , Área Tegmentar Ventral/efeitos dos fármacos
15.
Depress Anxiety ; 33(10): 895-906, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27699938

RESUMO

Kappa-opioid receptor (KOR) antagonists are currently being considered for the treatment of a variety of neuropsychiatric conditions, including depressive, anxiety, and substance abuse disorders. A general ability to mitigate the effects of stress, which can trigger or exacerbate these conditions, may explain their putative efficacy across such a broad array of conditions. The discovery of their potentially therapeutic effects evolved from preclinical research designed to characterize the molecular mechanisms by which experience causes neuroadaptations in the nucleus accumbens (NAc), a key element of brain reward circuitry. This research established that exposure to drugs of abuse or stress increases the activity of the transcription factor CREB (cAMP response element binding protein) in the NAc, which leads to elevated expression of the opioid peptide dynorphin that in turn causes core signs of depressive- and anxiety-related disorders. Disruption of KORs-the endogenous receptors for dynorphin-produces antidepressant- and anxiolytic-like actions in screening procedures that identify standard drugs of these classes, and reduces stress effects in tests used to study addiction and stress-related disorders. Although interest in this target is high, prototypical KOR antagonists have extraordinarily persistent pharmacodynamic effects that complicate clinical trials. The development of shorter acting KOR antagonists together with more rapid designs for clinical trials may soon provide insight on whether these drugs are efficacious as would be predicted by preclinical work. If successful, KOR antagonists would represent a unique example in psychiatry where the therapeutic mechanism of a drug class is understood before it is shown to be efficacious in humans.


Assuntos
Ansiolíticos/uso terapêutico , Antidepressivos/uso terapêutico , Transtornos de Ansiedade/tratamento farmacológico , Dinorfinas/fisiologia , Dinorfinas/uso terapêutico , Antagonistas de Entorpecentes/uso terapêutico , Núcleo Accumbens/efeitos dos fármacos , Receptores Opioides kappa/antagonistas & inibidores , Animais , Transtornos de Ansiedade/fisiopatologia , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Proteína de Ligação a CREB/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Humanos , Núcleo Accumbens/fisiopatologia , Receptores Opioides kappa/fisiologia , Recompensa , Estresse Psicológico/complicações , Estresse Psicológico/fisiopatologia , Transtornos Relacionados ao Uso de Substâncias/complicações , Transtornos Relacionados ao Uso de Substâncias/fisiopatologia , Pesquisa Translacional Biomédica
16.
Proc Natl Acad Sci U S A ; 110(12): 4798-803, 2013 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-23487762

RESUMO

Synaptic mechanisms underlying memory reconsolidation after retrieval are largely unknown. Here we report that synapses in projections to the lateral nucleus of the amygdala implicated in auditory fear conditioning, which are potentiated by learning, enter a labile state after memory reactivation, and must be restabilized through a postsynaptic mechanism implicating the mammalian target of rapamycin kinase-dependent signaling. Fear-conditioning-induced synaptic enhancements were primarily presynaptic in origin. Reconsolidation blockade with rapamycin, inhibiting mammalian target of rapamycin kinase activity, suppressed synaptic potentiation in slices from fear-conditioned rats. Surprisingly, this reduction of synaptic efficacy was mediated by post- but not presynaptic mechanisms. These findings suggest that different plasticity rules may apply to the processes underlying the acquisition of original fear memory and postreactivational stabilization of fear-conditioning-induced synaptic enhancements mediating fear memory reconsolidation.


Assuntos
Tonsila do Cerebelo/metabolismo , Medo/fisiologia , Aprendizagem/fisiologia , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Tonsila do Cerebelo/citologia , Animais , Antibacterianos/farmacologia , Masculino , Microdissecção , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/metabolismo , Ratos , Ratos Sprague-Dawley , Sirolimo/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Técnicas de Cultura de Tecidos
17.
Behav Pharmacol ; 26(7 Spec No): 654-63, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26110224

RESUMO

Accumulating evidence indicates that kappa-opioid receptors (KORs) and their endogenous ligand, dynorphin (DYN), can play important roles in regulating the effects of stress. Here, we examined the role of KOR systems in the molecular and behavioral effects of acute (1-day) and chronic (10-day) social defeat stress (SDS) in mice. We found that acute SDS increased DYN mRNA levels within the nucleus accumbens, a key element of brain dopamine (DA) systems. In contrast, chronic SDS produced long-lasting decreases in DYN mRNA levels. We then examined whether disruption of KOR function would affect development of SDS-induced depressive-like behaviors, as measured in the intracranial self-stimulation and social interaction tests. Ablation of KORs from DA transporter-expressing neurons delayed the development of SDS-induced anhedonia in the intracranial self-stimulation test, suggesting increased stress resilience. However, administration of the long-lasting KOR antagonist JDTic (30 mg/kg, intraperitoneally) before the SDS regimen did not affect anhedonia, suggesting that disruption of KOR function outside DA systems can oppose stress resilience. Social avoidance behavior measured after the 10-day SDS regimen was not altered by ablation of KORs in DA transporter-expressing neurons or by JDTic administration before testing. Our findings indicate that KORs expressed in DA systems regulate the effects of acute, but not chronic, social stress.


Assuntos
Dinorfinas/metabolismo , Núcleo Accumbens/metabolismo , Receptores Opioides kappa/metabolismo , Estresse Psicológico/metabolismo , Doença Aguda , Anedonia/fisiologia , Animais , Doença Crônica , Dominação-Subordinação , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Testes Psicológicos , RNA Mensageiro/metabolismo , Receptores Opioides kappa/genética , Resiliência Psicológica , Autoestimulação/fisiologia , Comportamento Social , Fatores de Tempo
18.
Handb Exp Pharmacol ; 228: 309-34, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25977088

RESUMO

The purpose of this chapter is to present results from recent research on social cognition in autism spectrum disorder (ASD). The clinical phenomenology and neuroanatomical circuitry of ASD are first briefly described. The neuropharmacology of social cognition in animal models of ASD and humans is then addressed. Next, preclinical and clinical research on the neurohormone oxytocin is reviewed. This is followed by a presentation of results from preclinical and clinical studies on the excitatory amino acid glutamate. Finally, the role of neuroinflammation in ASD is addressed from the perspectives of preclinical neuroscience and research involving humans with ASD.


Assuntos
Encéfalo/efeitos dos fármacos , Transtornos Globais do Desenvolvimento Infantil/tratamento farmacológico , Cognição/efeitos dos fármacos , Relações Interpessoais , Nootrópicos/uso terapêutico , Comportamento Social , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Transtornos Globais do Desenvolvimento Infantil/metabolismo , Transtornos Globais do Desenvolvimento Infantil/fisiopatologia , Transtornos Globais do Desenvolvimento Infantil/psicologia , Modelos Animais de Doenças , Humanos , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiopatologia
19.
Mol Pain ; 10: 62, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25245060

RESUMO

BACKGROUND: Intraplantar administration of complete Freund's adjuvant (CFA) and formalin are two noxious stimuli commonly used to produce sustained pain-related behaviors in rodents for research on neurobiology and treatment of pain. One clinically relevant manifestation of pain is depression of behavior and mood. This study compared effects of intraplantar CFA and formalin on depression of positively reinforced operant behavior in an assay of intracranial self-stimulation (ICSS) in rats. Effects of CFA and formalin on other physiological and behavioral measures, and opioid effects on formalin-induced depression of ICSS, were also examined. RESULTS: There were four main findings. First, consistent with previous studies, both CFA and formalin produced similar paw swelling and mechanical hypersensitivity. Second, CFA produced weak and transient depression of ICSS, whereas formalin produced a more robust and sustained depression of ICSS that lasted at least 14 days. Third, formalin-induced depression of ICSS was reversed by morphine doses that did not significantly alter ICSS in saline-treated rats, suggesting that formalin effects on ICSS can be interpreted as an example of pain-related and analgesic-reversible depression of behavior. Finally, formalin-induced depression of ICSS was not associated with changes in central biomarkers for activation of endogenous kappa opioid systems, which have been implicated in depressive-like states in rodents, nor was it blocked by the kappa antagonist norbinaltorphimine. CONCLUSIONS: These results suggest differential efficacy of sustained pain stimuli to depress brain reward function in rats as assessed with ICSS. Formalin-induced depression of ICSS does not appear to engage brain kappa opioid systems.


Assuntos
Formaldeído/toxicidade , Adjuvante de Freund/toxicidade , Inibição Psicológica , Dor , Receptores Opioides kappa/metabolismo , Autoestimulação/efeitos dos fármacos , Analgésicos Opioides/farmacologia , Analgésicos Opioides/uso terapêutico , Animais , Peso Corporal/fisiologia , Condicionamento Operante/efeitos dos fármacos , Modelos Animais de Doenças , Hiperalgesia/tratamento farmacológico , Hiperalgesia/fisiopatologia , Masculino , Morfina/farmacologia , Morfina/uso terapêutico , Naltrexona/análogos & derivados , Naltrexona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Dor/induzido quimicamente , Dor/tratamento farmacológico , Dor/psicologia , Ratos , Ratos Sprague-Dawley
20.
Behav Pharmacol ; 25(5-6): 473-92, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25083570

RESUMO

Drug withdrawal is often conceptualized as an aversive state that motivates drug-seeking and drug-taking behaviors in humans. Stress is more difficult to define, but is also frequently associated with aversive states. Here we describe evidence for the simple theory that drug withdrawal is a stress-like state, on the basis of common effects on behavioral, neurochemical, and molecular endpoints. We also describe data suggesting a more complex relationship between drug withdrawal and stress. As one example, we will highlight evidence that, depending on drug class, components of withdrawal can produce effects that have characteristics consistent with mood elevation. In addition, some stressors can act as positive reinforcers, defined as having the ability to increase the probability of a behavior that produces it. As such, accumulating evidence supports the general principles of opponent process theory, whereby processes that have an affective valence are followed in time by an opponent process that has the opposite valence. Throughout, we identify gaps in knowledge and propose future directions for research. A better understanding of the similarities, differences, and overlaps between drug withdrawal and stress will lead to the development of improved treatments for addiction, as well as for a vast array of neuropsychiatric conditions that are triggered or exacerbated by stress.


Assuntos
Modelos Psicológicos , Estresse Psicológico , Síndrome de Abstinência a Substâncias/psicologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Humanos , Estresse Psicológico/fisiopatologia , Síndrome de Abstinência a Substâncias/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA