Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neurobiol Dis ; 111: 70-79, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29274429

RESUMO

Stimulation of retinoic acid (RA) mediated signalling pathways following neural injury leads to regeneration in the adult nervous system and numerous studies have shown that the specific activation of the retinoic acid receptor ß (RARß) is required for this process. Here we identify a novel mechanism by which neuronal RARß activation results in the endogenous synthesis of RA which is released in association with exosomes and acts as a positive cue to axonal/neurite outgrowth. Using an established rodent model of RARß induced axonal regeneration, we show that neuronal RARß activation upregulates the enzymes involved in RA synthesis in a cell specific manner; alcohol dehydrogenase7 (ADH7) in neurons and aldehyde dehydrogenase 2 (Raldh2) in NG2 expressing cells (NG2+ cells). These release RA in association with exosomes providing a permissive substrate to neurite outgrowth. Conversely, deletion of Raldh2 in the NG2+ cells in our in vivo regeneration model is sufficient to compromise axonal outgrowth. This hitherto unidentified RA paracrine signalling is required for axonal/neurite outgrowth and is initiated by the activation of neuronal RARß signalling.


Assuntos
Antígenos/metabolismo , Exossomos/metabolismo , Regeneração Nervosa/fisiologia , Neuroglia/metabolismo , Crescimento Neuronal/fisiologia , Proteoglicanas/metabolismo , Tretinoína/metabolismo , Aldeído Oxirredutases/metabolismo , Animais , Transporte Biológico/fisiologia , Células Cultivadas , Medula Cervical/metabolismo , Medula Cervical/patologia , Técnicas de Cocultura , Modelos Animais de Doenças , Exossomos/patologia , Masculino , Camundongos , Neuroglia/patologia , Neurônios/metabolismo , Neurônios/patologia , Ratos Sprague-Dawley , Receptores do Ácido Retinoico/metabolismo , Retinal Desidrogenase/metabolismo , Raízes Nervosas Espinhais/lesões , Raízes Nervosas Espinhais/metabolismo , Raízes Nervosas Espinhais/patologia
2.
J Neurosci ; 35(47): 15731-45, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26609164

RESUMO

Failure of axonal regeneration in the central nervous system (CNS) is mainly attributed to a lack of intrinsic neuronal growth programs and an inhibitory environment from a glial scar. Phosphatase and tensin homolog (PTEN) is a major negative regulator of neuronal regeneration and, as such, inhibiting its activity has been considered a therapeutic target for spinal cord (SC) injuries (SCIs). Using a novel model of rat cervical avulsion, we show that treatment with a retinoic acid receptor ß (RARß) agonist results in locomotor and sensory recovery. Axonal regeneration from the severed roots into the SC could be seen by biotinylated dextran amine labeling. Light micrographs of the dorsal root entry zone show the peripheral nervous system (PNS)-CNS transition of regrown axons. RARß agonist treatment also resulted in the absence of scar formation. Mechanism studies revealed that, in RARß-agonist-treated neurons, PTEN activity is decreased by cytoplasmic phosphorylation and increased secretion in exosomes. These are taken up by astrocytes, resulting in hampered proliferation and causing them to arrange in a normal-appearing scaffold around the regenerating axons. Attribution of the glial modulation to neuronal PTEN in exosomes was demonstrated by the use of an exosome inhibitor in vivo and PTEN siRNA in vitro assays. The dual effect of RARß signaling, both neuronal and neuronal-glial, results in axonal regeneration into the SC after dorsal root neurotmesis. Targeting this pathway may open new avenues for the treatment of SCIs. SIGNIFICANCE STATEMENT: Spinal cord injuries (SCIs) often result in permanent damage in the adult due to the very limited capacity of axonal regeneration. Intrinsic neuronal programs and the formation of a glial scar are the main obstacles. Here, we identify a single target, neuronal retinoic acid receptor ß (RARß), which modulates these two aspects of the postinjury physiological response. Activation of RARß in the neuron inactivates phosphatase and tensin homolog and induces its transfer into the astrocytes in small vesicles, where it prevents scar formation. This may open new therapeutic avenues for SCIs.


Assuntos
Astrócitos/metabolismo , Cicatriz/metabolismo , Exossomos/metabolismo , Neuroglia/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Receptores do Ácido Retinoico/fisiologia , Regeneração da Medula Espinal/fisiologia , Animais , Células Cultivadas , Cicatriz/prevenção & controle , Masculino , Camundongos , Neuroglia/patologia , Neurônios/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais/fisiologia
3.
Mol Cell Neurosci ; 39(1): 105-17, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18585464

RESUMO

Traumatic avulsion of spinal nerve roots causes complete paralysis of the affected limb. Reimplantation of avulsed roots results in only limited functional recovery in humans, specifically of distal targets. Therefore, root avulsion causes serious and permanent disability. Here, we show in a rat model that lentiviral vector-mediated overexpression of glial cell line-derived neurotrophic factor (GDNF) in reimplanted nerve roots completely prevents motoneuron atrophy after ventral root avulsion and stimulates regeneration of axons into reimplanted roots. However, over the course of 16 weeks neuroma-like structures are formed in the reimplanted roots, and regenerating axons are trapped at sites with high levels of GDNF expression. A high local concentration of GDNF therefore impairs long distance regeneration. These observations show the feasibility of combining neurosurgical repair of avulsed roots with gene-therapeutic approaches. Our data also point to the importance of developing viral vectors that allow regulated expression of neurotrophic factors.


Assuntos
Vetores Genéticos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Lentivirus , Regeneração Nervosa/fisiologia , Radiculopatia/cirurgia , Raízes Nervosas Espinhais , Animais , Atrofia/prevenção & controle , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Células Cultivadas , Meios de Cultivo Condicionados , Feminino , Gânglios Espinais/citologia , Terapia Genética , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Humanos , Lentivirus/genética , Lentivirus/metabolismo , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Radiculopatia/patologia , Ratos , Ratos Wistar , Recuperação de Função Fisiológica , Células de Schwann/citologia , Células de Schwann/metabolismo , Medula Espinal/citologia , Medula Espinal/metabolismo , Raízes Nervosas Espinhais/fisiologia , Raízes Nervosas Espinhais/cirurgia , Transgenes
4.
Restor Neurol Neurosci ; 25(5-6): 585-99, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18418947

RESUMO

PURPOSE: Spinal root avulsions result in paralysis of the upper and/or lower extremities. Implanting a peripheral nerve bridge or reinsertion of the avulsed roots in the spinal cord are surgical strategies that lead to some degree of functional recovery. In the current study lentiviral (LV) vector-mediated gene transfer of a green fluorescent protein (GFP) reporter gene was used to study the feasibility of gene therapy in the reimplanted root to further promote regeneration of motor axons. METHODS: A total of 68 female Wistar rats underwent unilateral root avulsion of the L4, L5 and L6 ventral lumbar roots. From 23 rats intercostal nerves were dissected before ventral root avulsion surgery, injected with a lentiviral vector encoding GFP (LV-GFP) and inserted between the spinal cord and avulsed rootlet. In the remaining 45 rats, the avulsed ventral root was injected with either LV-GFP or a lentiviral vector encoding a fusion between a GlyAla repeat and GFP (LV-GArGFP), and reinserted into the spinal cord. Expression of GFP was evaluated at 1,2, 4 and 10 weeks, and one group at 4 months. RESULTS: LV-GFP transduction of either nerve implants or reimplanted ventral roots revealed high GFP expression during the first 2 post-lesion weeks, but virtually no expression at 4 weeks. Since this reduction coincided with the appearance of mononuclear cells at the repair site, an immune response against GFP may have occurred. In a subsequent experiment reimplanted ventral roots were transduced with a vector encoding GFP fused with the GlyAla repeat of Epstein-Barr virus Nuclear Antigen 1 known to prevent generation of antigenic peptides from transgene products. Expression of this "stealth" gene persisted for at least 4 months in the reimplanted root. CONCLUSION: Thus persistent transgene expression can be achieved with non-immunogenic transgene products in reimplanted ventral roots. This demonstrates the feasibility of combining neurosurgical repair with LV vector-mediated gene therapy. The current approach will be used in future experiments with LV vectors encoding neurotrophic factors to enhance the regeneration of spinal motor neurons after traumatic avulsion of spinal nerve roots.


Assuntos
Expressão Gênica/fisiologia , Vetores Genéticos/fisiologia , Proteínas de Fluorescência Verde/metabolismo , Lentivirus/fisiologia , Regeneração Nervosa/fisiologia , Traumatismos da Medula Espinal/patologia , Raízes Nervosas Espinhais/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Técnicas de Transferência de Genes , Ratos , Ratos Wistar , Traumatismos da Medula Espinal/terapia , Raízes Nervosas Espinhais/lesões , Fatores de Tempo
5.
Exp Neurol ; 189(2): 303-16, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15380481

RESUMO

Following avulsion of a spinal ventral root, motoneurons that project through the avulsed root are axotomized. Avulsion between, for example, L2 and L6 leads to denervation of hind limb muscles. Reimplantation of an avulsed root directed to the motoneuron pool resulted in re-ingrowth of some motor axons. However, most motoneurons display retrograde atrophy and subsequently die. Two neurotrophic factors, glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF), promote the survival of motoneurons after injury. The long-term delivery of these neurotrophic factors to the motoneurons in the ventral horn of the spinal cord is problematic. One strategy to improve the outcome of the neurosurgical reinsertion of the ventral root following avulsion would involve gene transfer with adeno-associated viral (AAV) vectors encoding these neurotrophic factors near the denervated motoneuron pool. Here, we show that AAV-mediated overexpression of GDNF and BDNF in the spinal cord persisted for at least 16 weeks. At both 1 and 4 months post-lesion AAV-BDNF- and -GDNF-treated animals showed an increased survival of motoneurons, the effect being more prominent at 1 month. AAV vector-mediated overexpression of neurotrophins also promoted the formation of a network of motoneuron fibers in the ventral horn at the avulsed side, but motoneurons failed to extent axons into the reinserted L4 root towards the sciatic nerve nor to improve functional recovery of the hind limbs. This suggests that high levels of neurotrophic factors in the ventral horn promote sprouting, but prevent directional growth of axons of a higher number of surviving motoneurons into the implanted root.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Neurônios Motores/metabolismo , Fatores de Crescimento Neural/genética , Regeneração Nervosa/genética , Radiculopatia/terapia , Medula Espinal/metabolismo , Animais , Técnicas de Transferência de Genes , Vetores Genéticos , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Cones de Crescimento/metabolismo , Cones de Crescimento/ultraestrutura , Vértebras Lombares , Masculino , Neurônios Motores/citologia , Plasticidade Neuronal/genética , Radiculopatia/metabolismo , Radiculopatia/patologia , Ratos , Ratos Wistar , Recuperação de Função Fisiológica/genética , Nervo Isquiático/citologia , Nervo Isquiático/fisiologia , Medula Espinal/patologia , Raízes Nervosas Espinhais/lesões , Raízes Nervosas Espinhais/patologia , Raízes Nervosas Espinhais/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA