Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Nature ; 628(8006): 162-170, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538791

RESUMO

Ageing of the immune system is characterized by decreased lymphopoiesis and adaptive immunity, and increased inflammation and myeloid pathologies1,2. Age-related changes in populations of self-renewing haematopoietic stem cells (HSCs) are thought to underlie these phenomena3. During youth, HSCs with balanced output of lymphoid and myeloid cells (bal-HSCs) predominate over HSCs with myeloid-biased output (my-HSCs), thereby promoting the lymphopoiesis required for initiating adaptive immune responses, while limiting the production of myeloid cells, which can be pro-inflammatory4. Ageing is associated with increased proportions of my-HSCs, resulting in decreased lymphopoiesis and increased myelopoiesis3,5,6. Transfer of bal-HSCs results in abundant lymphoid and myeloid cells, a stable phenotype that is retained after secondary transfer; my-HSCs also retain their patterns of production after secondary transfer5. The origin and potential interconversion of these two subsets is still unclear. If they are separate subsets postnatally, it might be possible to reverse the ageing phenotype by eliminating my-HSCs in aged mice. Here we demonstrate that antibody-mediated depletion of my-HSCs in aged mice restores characteristic features of a more youthful immune system, including increasing common lymphocyte progenitors, naive T cells and B cells, while decreasing age-related markers of immune decline. Depletion of my-HSCs in aged mice improves primary and secondary adaptive immune responses to viral infection. These findings may have relevance to the understanding and intervention of diseases exacerbated or caused by dominance of the haematopoietic system by my-HSCs.


Assuntos
Imunidade Adaptativa , Envelhecimento , Linhagem da Célula , Células-Tronco Hematopoéticas , Linfócitos , Células Mieloides , Rejuvenescimento , Animais , Feminino , Masculino , Camundongos , Imunidade Adaptativa/imunologia , Envelhecimento/imunologia , Linfócitos B/citologia , Linfócitos B/imunologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/imunologia , Inflamação/imunologia , Inflamação/patologia , Linfócitos/citologia , Linfócitos/imunologia , Linfopoese , Células Mieloides/citologia , Células Mieloides/imunologia , Mielopoese , Fenótipo , Linfócitos T/citologia , Linfócitos T/imunologia , Vírus/imunologia
2.
J Immunol ; 205(1): 143-152, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32493813

RESUMO

The ability of Zika virus (ZIKV) to cross the placenta and infect the fetus is a key mechanism by which ZIKV causes microcephaly. How the virus crosses the placenta and the role of the immune response in this process remain unclear. In the current study, we examined how ZIKV infection affected innate immune cells within the placenta and fetus and whether these cells influenced virus vertical transmission (VTx). We found myeloid cells were elevated in the placenta of pregnant ZIKV-infected Rag1-/- mice treated with an anti-IFNAR Ab, primarily at the end of pregnancy as well as transiently in the fetus several days before birth. These cells, which included maternal monocyte/macrophages, neutrophils, and fetal myeloid cells contained viral RNA and infectious virus, suggesting they may be infected and contributing to viral replication and VTx. However, depletion of monocyte/macrophage myeloid cells from the dam during ZIKV infection resulted in increased ZIKV infection in the fetus. Myeloid cells in the fetus were not depleted in this experiment, likely because of an inability of liposome particles containing the cytotoxic drug to cross the placenta. Thus, the increased virus infection in the fetus was not the result of an impaired fetal myeloid response or breakdown of the placental barrier. Collectively, these data suggest that monocyte/macrophage myeloid cells in the placenta play a significant role in inhibiting ZIKV VTx to the fetus, possibly through phagocytosis of virus or virus-infected cells.


Assuntos
Transmissão Vertical de Doenças Infecciosas , Macrófagos/imunologia , Monócitos/imunologia , Placenta/imunologia , Complicações Infecciosas na Gravidez/imunologia , Infecção por Zika virus/imunologia , Animais , Modelos Animais de Doenças , Feminino , Proteínas de Homeodomínio/genética , Humanos , Camundongos , Camundongos Knockout , Placenta/citologia , Gravidez , Complicações Infecciosas na Gravidez/virologia , RNA Viral/isolamento & purificação , Zika virus/genética , Zika virus/imunologia , Infecção por Zika virus/transmissão , Infecção por Zika virus/virologia
3.
J Immunol ; 200(2): 471-476, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29246952

RESUMO

Inflammatory monocyte (iMO) recruitment to the brain is a hallmark of many neurologic diseases. Prior to entering the brain, iMOs must egress into the blood from the bone marrow through a mechanism, which for known encephalitic viruses, is CCR2 dependent. In this article, we show that during La Crosse Virus-induced encephalitis, egress of iMOs was surprisingly independent of CCR2, with similar percentages of iMOs in the blood and brain of heterozygous and CCR2-/- mice following infection. Interestingly, CCR2 was required for iMO trafficking from perivascular areas to sites of virus infection within the brain. Thus, CCR2 was not essential for iMO trafficking to the blood or the brain but was essential for trafficking within the brain parenchyma. Analysis of other orthobunyaviruses showed that Jamestown Canyon virus also induced CCR2-independent iMO egress to the blood. These studies demonstrate that the CCR2 requirement for iMO egress to the blood is not universal for all viruses.


Assuntos
Antígenos Ly/metabolismo , Encefalite da Califórnia/imunologia , Encefalite da Califórnia/metabolismo , Vírus La Crosse , Monócitos/imunologia , Monócitos/metabolismo , Receptores CCR2/metabolismo , Animais , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Encéfalo/imunologia , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/virologia , Quimiotaxia de Leucócito/imunologia , Modelos Animais de Doenças , Encefalite da Califórnia/virologia , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Monócitos/patologia
4.
J Neuroinflammation ; 16(1): 229, 2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-31739796

RESUMO

BACKGROUND: La Crosse virus (LACV) is the leading cause of pediatric arboviral encephalitis in the USA. LACV encephalitis can result in learning and memory deficits, which may be due to infection and apoptosis of neurons in the brain. Despite neurons being the primary cell infected in the brain by LACV, little is known about neuronal responses to infection. METHODS: Human cerebral organoids (COs), which contain a spectrum of developing neurons, were used to examine neuronal responses to LACV. Plaque assay and quantitative reverse transcription (qRT) PCR were used to determine the susceptibility of COs to LACV infection. Immunohistochemistry, flow cytometry, and single-cell transcriptomics were used to determine specific neuronal subpopulation responses to the virus. RESULTS: Overall, LACV readily infected COs causing reduced cell viability and increased apoptosis. However, it was determined that neurons at different stages of development had distinct responses to LACV. Both neural progenitors and committed neurons were infected with LACV, however, committed neurons underwent apoptosis at a higher rate. Transcriptomic analysis showed that committed neurons expressed fewer interferon (IFN)-stimulated genes (ISGs) and genes involved IFN signaling in response to infection compared to neural progenitors. Furthermore, induction of interferon signaling in LACV-infected COs by application of recombinant IFN enhanced cell viability. CONCLUSIONS: These findings indicate that neuronal maturation increases the susceptibility of neurons to LACV-induced apoptosis. This susceptibility is likely due, at least in part, to mature neurons being less responsive to virus-induced IFN as evidenced by their poor ISG response to LACV. Furthermore, exogenous administration of recombinant IFN to LACV COs rescued cellular viability suggesting that increased IFN signaling is overall protective in this complex neural tissue. Together these findings indicate that induction of IFN signaling in developing neurons is an important deciding factor in virus-induced cell death.


Assuntos
Encefalite da Califórnia/imunologia , Interferon Tipo I/imunologia , Células-Tronco Neurais/virologia , Neurônios/virologia , Apoptose/fisiologia , Células Cultivadas , Encefalite da Califórnia/patologia , Humanos , Células-Tronco Pluripotentes Induzidas , Células-Tronco Neurais/patologia , Neurônios/citologia , Neurônios/patologia , Organoides
5.
J Immunol ; 198(9): 3526-3535, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28330900

RESUMO

The recent association between Zika virus (ZIKV) and neurologic complications, including Guillain-Barré syndrome in adults and CNS abnormalities in fetuses, highlights the importance in understanding the immunological mechanisms controlling this emerging infection. Studies have indicated that ZIKV evades the human type I IFN response, suggesting a role for the adaptive immune response in resolving infection. However, the inability of ZIKV to antagonize the mouse IFN response renders the virus highly susceptible to circulating IFN in murine models. Thus, as we show in this article, although wild-type C57BL/6 mice mount cell-mediated and humoral adaptive immune responses to ZIKV, these responses were not required to prevent disease. However, when the type I IFN response of mice was suppressed, then the adaptive immune responses became critical. For example, when type I IFN signaling was blocked by Abs in Rag1-/- mice, the mice showed dramatic weight loss and ZIKV infection in the brain and testes. This phenotype was not observed in Ig-treated Rag1-/- mice or wild-type mice treated with anti-type I IFNR alone. Furthermore, we found that the CD8+ T cell responses of pregnant mice to ZIKV infection were diminished compared with nonpregnant mice. It is possible that diminished cell-mediated immunity during pregnancy could increase virus spread to the fetus. These results demonstrate an important role for the adaptive immune response in the control of ZIKV infection and imply that vaccination may prevent ZIKV-related disease, particularly when the type I IFN response is suppressed as it is in humans.


Assuntos
Imunidade Adaptativa , Encéfalo/virologia , Linfócitos T CD8-Positivos/virologia , Complicações Infecciosas na Gravidez/imunologia , Testículo/virologia , Infecção por Zika virus/imunologia , Zika virus/imunologia , Animais , Anticorpos Bloqueadores/administração & dosagem , Encéfalo/imunologia , Linfócitos T CD8-Positivos/imunologia , Modelos Animais de Doenças , Feminino , Proteínas de Homeodomínio/genética , Humanos , Evasão da Resposta Imune , Interferon Tipo I/imunologia , Interferon Tipo I/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Gravidez/imunologia , Testículo/imunologia , Infecção por Zika virus/epidemiologia
6.
PLoS Pathog ; 12(12): e1006139, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28036370

RESUMO

Antibody-dependent enhancement (ADE) of Ebola virus (EBOV) infection has been demonstrated in vitro, raising concerns about the detrimental potential of some anti-EBOV antibodies. ADE has been described for many viruses and mostly depends on the cross-linking of virus-antibody complexes to cell surface Fc receptors, leading to enhanced infection. However, little is known about the molecular mechanisms underlying this phenomenon. Here we show that Fcγ-receptor IIa (FcγRIIa)-mediated intracellular signaling through Src family protein tyrosine kinases (PTKs) is required for ADE of EBOV infection. We found that deletion of the FcγRIIa cytoplasmic tail abolished EBOV ADE due to decreased virus uptake into cellular endosomes. Furthermore, EBOV ADE, but not non-ADE infection, was significantly reduced by inhibition of the Src family protein PTK pathway, which was also found to be important to promote phagocytosis/macropinocytosis for viral uptake into endosomes. We further confirmed a significant increase of the Src phosphorylation mediated by ADE. These data suggest that antibody-EBOV complexes bound to the cell surface FcγRIIa activate the Src signaling pathway that leads to enhanced viral entry into cells, providing a novel perspective for the general understanding of ADE of virus infection.


Assuntos
Anticorpos Facilitadores/imunologia , Doença pelo Vírus Ebola/imunologia , Receptores de IgG/imunologia , Transdução de Sinais/imunologia , Quinases da Família src/imunologia , Animais , Anticorpos Antivirais/imunologia , Chlorocebus aethiops , Técnicas de Silenciamento de Genes , Células HEK293 , Doença pelo Vírus Ebola/metabolismo , Humanos , Células Jurkat , Células K562 , Células Vero , Internalização do Vírus
7.
J Neuroinflammation ; 14(1): 62, 2017 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-28340587

RESUMO

BACKGROUND: La Crosse Virus (LACV) is a primary cause of pediatric viral encephalitis in the USA and can result in severe clinical outcomes. Almost all cases of LACV encephalitis occur in children 16 years or younger, indicating an age-related susceptibility. This susceptibility is recapitulated in a mouse model where weanling (3 weeks old or younger) mice are susceptible to LACV-induced disease, and adults (greater than 6 weeks) are resistant. Disease in mice and humans is associated with infiltrating leukocytes to the CNS. However, what cell types are infiltrating into the brain during virus infection and how these cells influence pathogenesis remain unknown. METHODS: In the current study, we analyzed lymphocytes recruited to the CNS during LACV-infection in clinical mice, using flow cytometry. We analyzed the contribution of these lymphocytes to LACV pathogenesis in weanling mice using knockout mice or antibody depletion. Additionally, we studied at the potential role of these lymphocytes in preventing LACV neurological disease in resistant adult mice. RESULTS: In susceptible weanling mice, disease was associated with infiltrating lymphocytes in the CNS, including NK cells, CD4 T cells, and CD8 T cells. Surprisingly, depletion of these cells did not impact neurological disease, suggesting these cells do not contribute to virus-mediated damage. In contrast, in disease-resistant adult animals, depletion of both CD4 T cells and CD8 T cells or depletion of B cells increased neurological disease, with higher levels of virus in the brain. CONCLUSIONS: Our current results indicate that lymphocytes do not influence neurological disease in young mice, but they have a critical role protecting adult animals from LACV pathogenesis. Although LACV is an acute virus infection, these studies indicate that the innate immune response in adults is not sufficient for protection and that components of the adaptive immune response are necessary to prevent virus from invading the CNS.


Assuntos
Encefalite da Califórnia/imunologia , Linfócitos/imunologia , Animais , Modelos Animais de Doenças , Vírus La Crosse , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
8.
J Immunol ; 192(6): 2744-55, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24532583

RESUMO

Tick-borne encephalitis virus (TBEV), a member of the Flaviviridae family, is a leading cause of viral encephalitis in Europe and Asia. Dendritic cells (DCs), as early cellular targets of infection, provide an opportunity for flaviviruses to inhibit innate and adaptive immune responses. Flaviviruses modulate DC function, but the mechanisms underpinning this are not defined. We examined the maturation phenotype and function of murine bone marrow-derived DCs infected with Langat virus (LGTV), a naturally attenuated member of the TBEV serogroup. LGTV infection failed to induce DC maturation or a cytokine response. Treatment with LPS or LPS/IFN-γ, strong inducers of inflammatory cytokines, resulted in enhanced TNF-α and IL-6 production, but suppressed IL-12 production in infected DCs compared with uninfected "bystander" cells or mock-infected controls. LGTV-mediated antagonism of type I IFN (IFN-I) signaling contributed to inhibition of IL-12p40 mRNA expression at late time points after stimulation. However, early suppression was still observed in DCs lacking the IFN-I receptor (Ifnar(-/-)), suggesting that additional mechanisms of antagonism exist. The early IFN-independent inhibition of IL-12p40 was nearly abolished in DCs deficient in IFN regulatory factor-1 (IRF-1), a key transcription factor required for IL-12 production. LGTV infection did not affect Irf-1 mRNA expression, but rather diminished IRF-1 protein levels and nuclear localization. The effect on IRF-1 was also observed in DCs infected with the highly virulent Sofjin strain of TBEV. Thus, antagonism of IRF-1 is a novel mechanism that synergizes with the noted ability of flaviviruses to suppress IFN-α/ß receptor-dependent signaling, resulting in the orchestrated evasion of host innate immunity.


Assuntos
Células Dendríticas/imunologia , Vírus da Encefalite Transmitidos por Carrapatos/imunologia , Fator Regulador 1 de Interferon/imunologia , Interferon Tipo I/imunologia , Transdução de Sinais/imunologia , Animais , Células Cultivadas , Células Dendríticas/metabolismo , Células Dendríticas/virologia , Vírus da Encefalite Transmitidos por Carrapatos/fisiologia , Feminino , Citometria de Fluxo , Interações Hospedeiro-Patógeno/imunologia , Immunoblotting , Fator Regulador 1 de Interferon/genética , Fator Regulador 1 de Interferon/metabolismo , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Interferon gama/imunologia , Interferon gama/farmacologia , Interleucina-12/genética , Interleucina-12/imunologia , Interleucina-12/metabolismo , Interleucina-6/genética , Interleucina-6/imunologia , Interleucina-6/metabolismo , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Microscopia Confocal , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/imunologia , Receptor de Interferon alfa e beta/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo
9.
J Immunol ; 193(6): 2952-60, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25098294

RESUMO

Vß5(+) regulatory T cells (Tregs), which are specific for a mouse endogenous retroviral superantigen, become activated and proliferate in response to Friend virus (FV) infection. We previously reported that FV-induced expansion of this Treg subset was dependent on CD8(+) T cells and TNF-α, but independent of IL-2. We now show that the inflammatory milieu associated with FV infection is not necessary for induction of Vß5(+) Treg expansion. Rather, it is the presence of activated CD8(+) T cells that is critical for their expansion. The data indicate that the mechanism involves signaling between the membrane-bound form of TNF-α on activated CD8(+) T cells and TNFR2 on Tregs. CD8(+) T cells expressing membrane-bound TNF-α but no soluble TNF-α remained competent to induce strong Vß5(+) Treg expansion in vivo. In addition, Vß5(+) Tregs expressing only TNFR2 but no TNFR1 were still responsive to expansion. Finally, treatment of naive mice with soluble TNF-α did not induce Vß5(+) Treg expansion, but treatment with a TNFR2-specific agonist did. These results reveal a new mechanism of intercellular communication between activated CD8(+) T cell effectors and Tregs that results in the activation and expansion of a Treg subset that subsequently suppresses CD8(+) T cell functions.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Ativação Linfocitária/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/biossíntese , Receptores Tipo II do Fator de Necrose Tumoral/imunologia , Fator de Necrose Tumoral alfa/biossíntese , Animais , Proteínas de Transporte/genética , Feminino , Vírus da Leucemia Murina de Friend/imunologia , Leucemia Experimental/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Tipo I de Fatores de Necrose Tumoral , Receptores Tipo II do Fator de Necrose Tumoral/agonistas , Infecções por Retroviridae/imunologia , Transdução de Sinais/imunologia , Linfócitos T Reguladores/imunologia , Infecções Tumorais por Vírus/imunologia
10.
J Biol Chem ; 289(18): 12245-63, 2014 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-24627481

RESUMO

In prion-infected hosts, PrPSc usually accumulates as non-fibrillar, membrane-bound aggregates. Glycosylphosphatidylinositol (GPI) anchor-directed membrane association appears to be an important factor controlling the biophysical properties of PrPSc aggregates. To determine whether GPI anchoring can similarly modulate the assembly of other amyloid-forming proteins, neuronal cell lines were generated that expressed a GPI-anchored form of a model amyloidogenic protein, the NM domain of the yeast prion protein Sup35 (Sup35(GPI)). We recently reported that GPI anchoring facilitated the induction of Sup35(GPI) prions in this system. Here, we report the ultrastructural characterization of self-propagating Sup35(GPI) aggregates of either spontaneous or induced origin. Like membrane-bound PrPSc, Sup35(GPI) aggregates resisted release from cells treated with phosphatidylinositol-specific phospholipase C. Sup35(GPI) aggregates of spontaneous origin were detergent-insoluble, protease-resistant, and self-propagating, in a manner similar to that reported for recombinant Sup35NM amyloid fibrils and induced Sup35(GPI) aggregates. However, GPI-anchored Sup35 aggregates were not stained with amyloid-binding dyes, such as Thioflavin T. This was consistent with ultrastructural analyses, which showed that the aggregates corresponded to dense cell surface accumulations of membrane vesicle-like structures and were not fibrillar. Together, these results showed that GPI anchoring directs the assembly of Sup35NM into non-fibrillar, membrane-bound aggregates that resemble PrPSc, raising the possibility that GPI anchor-dependent modulation of protein aggregation might occur with other amyloidogenic proteins. This may contribute to differences in pathogenesis and pathology between prion diseases, which uniquely involve aggregation of a GPI-anchored protein, versus other protein misfolding diseases.


Assuntos
Membrana Celular/metabolismo , Vesículas Citoplasmáticas/metabolismo , Glicosilfosfatidilinositóis/metabolismo , Fatores de Terminação de Peptídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Animais , Linhagem Celular Tumoral , Vesículas Citoplasmáticas/ultraestrutura , Detergentes/química , Glicosilfosfatidilinositóis/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Immunoblotting , Camundongos , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Fatores de Terminação de Peptídeos/química , Fatores de Terminação de Peptídeos/genética , Fosfoinositídeo Fosfolipase C/metabolismo , Proteínas PrPSc/química , Proteínas PrPSc/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Solubilidade
11.
Infect Immun ; 83(7): 2661-71, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25895967

RESUMO

Salmonella enterica serovar Typhimurium is a common cause of food-borne gastrointestinal illness, but additionally it causes potentially fatal bacteremia in some immunocompromised patients. In mice, systemic spread and replication of the bacteria depend upon infection of and replication within macrophages, but replication in human macrophages is not widely reported or well studied. In order to assess the ability of Salmonella Typhimurium to replicate in human macrophages, we infected primary monocyte-derived macrophages (MDM) that had been differentiated under conditions known to generate different phenotypes. We found that replication in MDM depends greatly upon the phenotype of the cells, as M1-skewed macrophages did not allow replication, while M2a macrophages and macrophages differentiated with macrophage colony-stimulating factor (M-CSF) alone (termed M0) did. We describe how additional conditions that alter the macrophage phenotype or the gene expression of the bacteria affect the outcome of infection. In M0 MDM, the temporal expression of representative genes from Salmonella pathogenicity islands 1 and 2 (SPI1 and SPI2) and the importance of the PhoP/Q two-component regulatory system are similar to what has been shown in mouse macrophages. However, in contrast to mouse macrophages, where replication is SPI2 dependent, we observed early SPI2-independent replication in addition to later SPI2-dependent replication in M0 macrophages. Only SPI2-dependent replication was associated with death of the host cell at later time points. Altogether, our results reveal a very nuanced interaction between Salmonella and human macrophages.


Assuntos
Interações Hospedeiro-Patógeno , Macrófagos/imunologia , Macrófagos/microbiologia , Salmonella typhimurium/crescimento & desenvolvimento , Sobrevivência Celular , Células Cultivadas , Ilhas Genômicas , Humanos , Salmonella typhimurium/genética
12.
J Virol ; 88(19): 11070-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25008929

RESUMO

UNLABELLED: La Crosse virus (LACV) is the major cause of pediatric viral encephalitis in the United States; however, the mechanisms responsible for age-related susceptibility in the pediatric population are not well understood. Our current studies in a mouse model of LACV infection indicated that differences in myeloid dendritic cell (mDC) responses between weanling and adult mice accounted for susceptibility to LACV-induced neurological disease. We found that type I interferon (IFN) responses were significantly stronger in adult than in weanling mice. Production of these IFNs required both endosomal Toll-like receptors (TLRs) and cytoplasmic RIG-I-like receptors (RLRs). Surprisingly, IFN expression was not dependent on plasmacytoid DCs (pDCs) but rather was dependent on mDCs, which were found in greater number and induced stronger IFN responses in adults than in weanlings. Inhibition of these IFN responses in adults resulted in susceptibility to LACV-induced neurological disease, whereas postinfection treatment with type I IFN provided protection in young mice. These studies provide a definitive mechanism for age-related susceptibility to LACV encephalitis, where mDCs in young mice are insufficiently activated to control peripheral virus replication, thereby allowing virus to persist and eventually cause central nervous system (CNS) disease. IMPORTANCE: La Crosse virus (LACV) is the primary cause of pediatric viral encephalitis in the United States. Although the virus infects both adults and children, over 80% of the reported neurological disease cases are in children. To understand why LACV causes neurological disease primarily in young animals, we used a mouse model where weanling mice, but not adult mice, develop neurological disease following virus infection. We found that an early immune response cell type, myeloid dendritic cells, was critical for protection in adult animals and that these cells were reduced in young animals. Activation of these cells during virus infection or after treatment with type I interferon in young animals provided protection from LACV. Thus, this study demonstrates a reason for susceptibility to LACV infection in young animals and shows that early therapeutic treatment in young animals can prevent neurological disease.


Assuntos
Sistema Nervoso Central/imunologia , Células Dendríticas/imunologia , Encefalite da Califórnia/imunologia , Vírus La Crosse/imunologia , Células Mieloides/imunologia , Fatores Etários , Animais , Animais Recém-Nascidos , Sistema Nervoso Central/virologia , Células Dendríticas/virologia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Encefalite da Califórnia/mortalidade , Encefalite da Califórnia/virologia , Expressão Gênica/imunologia , Humanos , Injeções Intradérmicas , Injeções Intraperitoneais , Injeções Intraventriculares , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Camundongos , Células Mieloides/virologia , Análise de Sobrevida , Receptores Toll-Like/genética , Receptores Toll-Like/imunologia , Replicação Viral
13.
J Immunol ; 190(11): 5485-95, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23645880

RESUMO

Friend virus infection of mice induces the expansion and activation of regulatory T cells (Tregs) that dampen acute immune responses and promote the establishment and maintenance of chronic infection. Adoptive transfer experiments and the expression of neuropilin-1 indicate that these cells are predominantly natural Tregs rather than virus-specific conventional CD4(+) T cells that converted into induced Tregs. Analysis of Treg TCR Vß chain usage revealed a broadly distributed polyclonal response with a high proportionate expansion of the Vß5(+) Treg subset, which is known to be responsive to endogenous retrovirus-encoded superantigens. In contrast to the major population of Tregs, the Vß5(+) subset expressed markers of terminally differentiated effector cells, and their expansion was associated with the level of the antiviral CD8(+) T cell response rather than the level of Friend virus infection. Surprisingly, the expansion and accumulation of the Vß5(+) Tregs was IL-2 independent but dependent on TNF-α. These experiments reveal a subset-specific Treg induction by a new pathway.


Assuntos
Vírus da Leucemia Murina de Friend/imunologia , Interleucina-2/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Infecções por Retroviridae/imunologia , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/imunologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Feminino , Imunofenotipagem , Interleucina-2/metabolismo , Camundongos , Fenótipo , Linfócitos T Reguladores/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Infecções Tumorais por Vírus/imunologia
14.
EMBO J ; 29(4): 782-94, 2010 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-20057357

RESUMO

Prion diseases differ from other amyloid-associated protein misfolding diseases (e.g. Alzheimer's) because they are naturally transmitted between individuals and involve spread of protein aggregation between tissues. Factors underlying these features of prion diseases are poorly understood. Of all protein misfolding disorders, only prion diseases involve the misfolding of a glycosylphosphatidylinositol (GPI)-anchored protein. To test whether GPI anchoring can modulate the propagation and spread of protein aggregates, a GPI-anchored version of the amyloidogenic yeast protein Sup35NM (Sup35GPI) was expressed in neuronal cells. Treatment of cells with Sup35NM fibrils induced the GPI anchor-dependent formation of self-propagating, detergent-insoluble, protease-resistant, prion-like aggregates of Sup35GPI. Live-cell imaging showed intercellular spread of Sup35GPI aggregation to involve contact between aggregate-positive and aggregate-negative cells and transfer of Sup35GPI from aggregate-positive cells. These data demonstrate GPI anchoring facilitates the propagation and spread of protein aggregation and thus may enhance the transmissibility and pathogenesis of prion diseases relative to other protein misfolding diseases.


Assuntos
Glicosilfosfatidilinositóis/química , Glicosilfosfatidilinositóis/metabolismo , Fatores de Terminação de Peptídeos/química , Fatores de Terminação de Peptídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Animais , Linhagem Celular , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Neurônios/metabolismo , Fatores de Terminação de Peptídeos/genética , Príons/química , Príons/genética , Príons/metabolismo , Dobramento de Proteína , Multimerização Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transfecção
15.
J Neuroinflammation ; 11: 70, 2014 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-24708744

RESUMO

BACKGROUND: The perinatal period is one in which the mammalian brain is particularly vulnerable to immune-mediated damage. Early inflammation in the central nervous system (CNS) is linked with long-term impairment in learning and behavior, necessitating a better understanding of mediators of neuroinflammation. We therefore directly examined how age affected neuroinflammatory responses to pathogenic stimuli. METHODS: In mice, susceptibility to neurological damage changes dramatically during the first few weeks of life. Accordingly, we compared neuroinflammatory responses to pathogen associated molecular patterns (PAMPs) of neonatal (two day-old) and weanling (21 day-old) mice. Mice were inoculated intracerebrally with PAMPs and the cellular and molecular changes in the neuroinflammatory response were examined. RESULTS: Of the 12 cytokines detected in the CNS following toll-like receptor 4 (TLR4) stimulation, ten were significantly higher in neonates compared with weanling mice. A similar pattern of increased cytokines in neonates was also observed with TLR9 stimulation. Analysis of cellular responses indicated a difference in microglial activation markers in the CNS of neonatal mice and increased expression of proteins known to modulate cellular activation including CD11a, F4/80 and CD172a. We also identified a new marker on microglia, SLAMF7, which was expressed at higher levels in neonates compared with weanlings. CONCLUSIONS: A unique neuroinflammatory profile, including higher expression of several proinflammatory cytokines and differential expression of microglial markers, was observed in brain tissue from neonates following TLR stimulation. This increased neuroinflammatory response to PAMPs may explain why the developing brain is particularly sensitive to infection and why infection or stress during this time can lead to long-term damage in the CNS.


Assuntos
Envelhecimento , Doenças do Sistema Nervoso Central/metabolismo , Citocinas/metabolismo , Inflamação/metabolismo , Receptores Toll-Like/metabolismo , Animais , Animais Recém-Nascidos , Antígenos de Diferenciação , Antígeno CD11a , Doenças do Sistema Nervoso Central/induzido quimicamente , Doenças do Sistema Nervoso Central/complicações , Citocinas/genética , Modelos Animais de Doenças , Citometria de Fluxo , Inflamação/induzido quimicamente , Inflamação/complicações , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Oligodesoxirribonucleotídeos/toxicidade , Polímeros/toxicidade , RNA Mensageiro/metabolismo , Receptores Imunológicos , Ácidos Sulfônicos/toxicidade , Receptores Toll-Like/genética
16.
Commun Biol ; 7(1): 494, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658802

RESUMO

Inflammatory monocytes (iMO) are recruited from the bone marrow to the brain during viral encephalitis. C-C motif chemokine receptor (CCR) 2 deficiency substantially reduces iMO recruitment for most, but not all encephalitic viruses. Here we show CCR7 acts synergistically with CCR2 to control this process. Following Herpes simplex virus type-1 (HSV-1), or La Crosse virus (LACV) infection, we find iMO proportions are reduced by approximately half in either Ccr2 or Ccr7 knockout mice compared to control mice. However, Ccr2/Ccr7 double knockouts eliminate iMO recruitment following infection with either virus, indicating these receptors together control iMO recruitment. We also find that LACV induces a more robust iMO recruitment than HSV-1. However, unlike iMOs in HSV-1 infection, LACV-recruited iMOs do not influence neurological disease development. LACV-induced iMOs have higher expression of proinflammatory and proapoptotic but reduced mitotic, phagocytic and phagolysosomal transcripts compared to HSV-1-induced iMOs. Thus, virus-specific activation of iMOs affects their recruitment, activation, and function.


Assuntos
Encéfalo , Herpesvirus Humano 1 , Vírus La Crosse , Camundongos Knockout , Monócitos , Receptores CCR2 , Receptores CCR7 , Animais , Receptores CCR2/metabolismo , Receptores CCR2/genética , Camundongos , Monócitos/imunologia , Monócitos/metabolismo , Monócitos/virologia , Encéfalo/virologia , Encéfalo/metabolismo , Encéfalo/imunologia , Herpesvirus Humano 1/fisiologia , Vírus La Crosse/genética , Vírus La Crosse/fisiologia , Receptores CCR7/metabolismo , Receptores CCR7/genética , Encefalite da Califórnia/virologia , Encefalite da Califórnia/genética , Encefalite da Califórnia/metabolismo , Encefalite da Califórnia/imunologia , Camundongos Endogâmicos C57BL , Inflamação/metabolismo , Inflamação/virologia , Feminino , Masculino
17.
Infect Immun ; 81(11): 4041-52, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23959716

RESUMO

Yersinia pestis carries homologues of the toxin complex (Tc) family proteins, which were first identified in other Gram-negative bacteria as having potent insecticidal activity. The Y. pestis Tc proteins are neither toxic to fleas nor essential for survival of the bacterium in the flea, even though tc gene expression is highly upregulated and much more of the Tc proteins YitA and YipA are produced in the flea than when Y. pestis is grown in vitro. We show that Tc(+) and Tc(-) Y. pestis strains are transmitted equivalently from coinfected fleas, further demonstrating that the Tc proteins have no discernible role, either positive or negative, in transmission by the flea vector. Tc proteins did, however, confer Y. pestis with increased resistance to killing by polymorphonuclear leukocytes (PMNs). Resistance to killing was not the result of decreased PMN viability or increased intracellular survival but instead correlated with a Tc protein-dependent resistance to phagocytosis that was independent of the type III secretion system (T3SS). Correspondingly, we did not detect T3SS-dependent secretion of the native Tc proteins YitA and YipA or the translocation of YitA- or YipA-ß-lactamase fusion proteins into CHO-K1 (CHO) cells or human PMNs. Thus, although highly produced by Y. pestis within the flea and related to insecticidal toxins, the Tc proteins do not affect interaction with the flea or transmission. Rather, the Y. pestis Tc proteins inhibit phagocytosis by mouse PMNs, independent of the T3SS, and may be important for subverting the mammalian innate immune response immediately following transmission from the flea.


Assuntos
Toxinas Bacterianas/imunologia , Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , Neutrófilos/imunologia , Neutrófilos/microbiologia , Fagocitose , Yersinia pestis/imunologia , Yersinia pestis/patogenicidade , Animais , Células Cultivadas , Cricetinae , Humanos , Camundongos , Sifonápteros/microbiologia
18.
J Virol ; 84(7): 3503-15, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20106931

RESUMO

Flaviviruses transmitted by arthropods represent a tremendous disease burden for humans, causing millions of infections annually. All vector-borne flaviviruses studied to date suppress host innate responses to infection by inhibiting alpha/beta interferon (IFN-alpha/beta)-mediated JAK-STAT signal transduction. The viral nonstructural protein NS5 of some flaviviruses functions as the major IFN antagonist, associated with inhibition of IFN-dependent STAT1 phosphorylation (pY-STAT1) or with STAT2 degradation. West Nile virus (WNV) infection prevents pY-STAT1 although a role for WNV NS5 in IFN antagonism has not been fully explored. Here, we report that NS5 from the virulent NY99 strain of WNV prevented pY-STAT1 accumulation, suppressed IFN-dependent gene expression, and rescued the growth of a highly IFN-sensitive virus (Newcastle disease virus) in the presence of IFN, suggesting that this protein can function as an efficient IFN antagonist. In contrast, NS5 from Kunjin virus (KUN), a naturally attenuated subtype of WNV, was a poor suppressor of pY-STAT1. Mutation of a single residue in KUN NS5 to the analogous residue in WNV-NY99 NS5 (S653F) rendered KUN NS5 an efficient inhibitor of pY-STAT1. Incorporation of this mutation into recombinant KUN resulted in 30-fold greater inhibition of JAK-STAT signaling than with the wild-type virus and enhanced KUN replication in the presence of IFN. Thus, a naturally occurring mutation is associated with the function of NS5 in IFN antagonism and may influence virulence of WNV field isolates.


Assuntos
Interferon Tipo I/antagonistas & inibidores , Janus Quinases/antagonistas & inibidores , Fator de Transcrição STAT1/antagonistas & inibidores , Transdução de Sinais/fisiologia , Proteínas não Estruturais Virais/fisiologia , Animais , Chlorocebus aethiops , Humanos , Células Vero , Proteínas não Estruturais Virais/química , Vírus do Nilo Ocidental/fisiologia
19.
J Immunol ; 183(3): 1636-43, 2009 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-19587016

RESUMO

Infection of mice with Friend virus induces the activation of CD4(+) regulatory T cells (Tregs) that suppress virus-specific CD8(+) T cells. This suppression leads to incomplete virus clearance and the establishment of virus persistence. We now show that Treg-mediated suppression of CD8(+) T cells is tissue specific, occurring in the spleen but not the liver. Regardless of infection status, there was a 5-fold lower proportion of Tregs in the liver than in the spleen, much lower absolute cell numbers, and the relatively few Tregs present expressed less CD25. Results indicated that reduced expression of CD25 on liver Tregs was due to microenvironmental factors including low levels of IL-2 production by CD4(+) Th cells in that tissue. Low CD25 expression on liver Tregs did not impair their ability to suppress CD8(+) T cells in vitro. Correlating with the decreased proportion of Tregs in the liver was a significantly increased proportion of virus-specific CD8(+) T cells compared with the spleen. The virus-specific CD8(+) T cells from the liver did not appear suppressed given that they produced both IFN-gamma and granzyme B, and they also showed evidence of recent cytolytic activity (CD107a(+)). The functional phenotype of the virus-specific CD8(+) T cells correlated with a 10-fold reduction of chronic Friend virus levels in the liver compared with the spleen. Thus, suppression of CD8(+) T cells by virus-induced Tregs occurs in a tissue-specific manner and correlates with profound effects on localized levels of chronic infection.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Infecções por Retroviridae/imunologia , Baço/imunologia , Linfócitos T Reguladores/imunologia , Animais , Doença Crônica , Vírus da Leucemia Murina de Friend , Leucemia Experimental , Camundongos , Especificidade de Órgãos , Baço/virologia , Infecções Tumorais por Vírus , Carga Viral
20.
Infect Immun ; 78(12): 5086-98, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20876291

RESUMO

A delayed inflammatory response is a prominent feature of infection with Yersinia pestis, the agent of bubonic and pneumonic plague. Using a rat model of bubonic plague, we examined lymph node histopathology, transcriptome, and extracellular cytokine levels to broadly characterize the kinetics and extent of the host response to Y. pestis and how it is influenced by the Yersinia virulence plasmid (pYV). Remarkably, dissemination and multiplication of wild-type Y. pestis during the bubonic stage of disease did not induce any detectable gene expression or cytokine response by host lymph node cells in the developing bubo. Only after systemic spread had led to terminal septicemic plague was a transcriptomic response detected, which included upregulation of several cytokine, chemokine, and other immune response genes. Although an initial intracellular phase of Y. pestis infection has been postulated, a Th1-type cytokine response associated with classical activation of macrophages was not observed during the bubonic stage of disease. However, elevated levels of interleukin-17 (IL-17) were present in infected lymph nodes. In the absence of pYV, sustained recruitment to the lymph node of polymorphonuclear leukocytes (PMN, or neutrophils), the major IL-17 effector cells, correlated with clearance of infection. Thus, the ability to counteract a PMN response in the lymph node appears to be a major in vivo function of the Y. pestis virulence plasmid.


Assuntos
Linfonodos/microbiologia , Peste/imunologia , Yersinia pestis/imunologia , Animais , Quimiocinas/biossíntese , Citocinas/biossíntese , Feminino , Citometria de Fluxo , Perfilação da Expressão Gênica , Imunidade Inata/imunologia , Linfonodos/imunologia , Linfonodos/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Peste/microbiologia , Peste/patologia , Reação em Cadeia da Polimerase , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA