RESUMO
Endothelial thrombomodulin (TM) regulates coagulation and inflammation via several mechanisms, including production of activated protein C (APC). Recombinant APC and soluble fragments of TM (sTM) have been tested in settings associated with insufficiency of the endogenous TM/APC pathway, such as sepsis. We previously designed a fusion protein of TM [single-chain variable fragment antibody (scFv)/TM] targeted to red blood cells (RBCs) to improve pharmacokinetics and antithrombotic effects without increasing bleeding. Here, scFv/TM was studied in mouse models of systemic inflammation and ischemia-reperfusion injury. Injected concomitantly with or before endotoxin, scFv/TM provided more potent protection against liver injury and release of pathological mediators than sTM, showing similar efficacy at up to 50-fold lower doses. scFv/TM provided protection when injected after endotoxin, whereas sTM did not, and augmented APC production by thrombin â¼50-fold more than sTM. However, scFv/TM injected after endotoxin did not reduce thrombin/antithrombin complexes; nor did antibodies that block APC anticoagulant activity suppress the prophylactic anti-inflammatory effect of scFv/TM. Therefore, similar to endogenous TM, RBC-anchored scFv/TM activates several protective pathways. Finally, scFv/TM was more effective at reducing cerebral infarct volume and alleviated neurological deficits than sTM after cerebral ischemia/reperfusion injury. These results indicate that RBC-targeted scFv/TM exerts multifaceted cytoprotective effects and may find utility in systemic and focal inflammatory and ischemic disorders.-Carnemolla, R., Villa, C. H., Greineder, C. F., Zaitseva, S., Patel, K. R., Kowalska, M. A., Atochin, D. N., Cines, D. B., Siegel, D. L., Esmon, C. T., Muzykantov, V. R. Targeting thrombomodulin to circulating red blood cells augments its protective effects in models of endotoxemia and ischemia-reperfusion injury.
Assuntos
Endotoxemia/prevenção & controle , Eritrócitos/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Trombomodulina/administração & dosagem , Trombomodulina/uso terapêutico , Animais , Inflamação/tratamento farmacológico , Masculino , Proteínas de Fusão de Membrana , Camundongos , Camundongos Endogâmicos C57BL , Trombomodulina/químicaRESUMO
Anchoring pharmacologic agents to the vascular lumen has the potential to modulate critical processes at the blood-tissue interface, avoiding many of the off-target effects of systemically circulating agents. We report a novel strategy for endothelial dual targeting of therapeutics, which both enhances drug delivery and enables targeted agents to partner enzymatically to generate enhanced biologic effect. Based on the recent discovery that paired antibodies directed to adjacent epitopes of platelet endothelial cell adhesion molecule (PECAM)-1 stimulate each other's binding, we fused single-chain fragments (scFv) of paired anti-mouse PECAM-1 antibodies to recombinant murine thrombomodulin (TM) and endothelial protein C receptor (EPCR), endothelial membrane proteins that partner in activation of protein C (PC). scFv/TM and scFv/EPCR bound to mouse endothelial PECAM-1 with high affinity (EC50 1.5 and 3.8 nM, respectively), and codelivery induced a 5-fold increase in PC activation not seen when TM and EPCR are anchored to distinct cell adhesion molecules. In a mouse model of acute lung injury, dual targeting reduces both the expression of lung inflammatory markers and trans-endothelial protein leak by as much as 40%, as compared to either agent alone. These findings provide proof of principle for endothelial dual targeting, an approach with numerous potential biomedical applications.
Assuntos
Células Endoteliais/efeitos dos fármacos , Preparações Farmacêuticas/administração & dosagem , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Animais , Moléculas de Adesão Celular/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos/métodos , Células Endoteliais/metabolismo , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Epitopos/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Proteína C/metabolismo , Receptores de Superfície Celular/metabolismo , Trombomodulina/metabolismoRESUMO
Despite continued achievements in antithrombotic pharmacotherapy, difficulties remain in managing patients at high risk for both thrombosis and hemorrhage. Utility of antithrombotic agents (ATAs) in these settings is restricted by inadequate pharmacokinetics and narrow therapeutic indices. Use of advanced drug delivery systems (ADDSs) may help to circumvent these problems. Various nanocarriers, affinity ligands, and polymer coatings provide ADDSs that have the potential to help optimize ATA pharmacokinetics, target drug delivery to sites of thrombosis, and sense pathologic changes in the vascular microenvironment, such as altered hemodynamic forces, expression of inflammatory markers, and structural differences between mature hemostatic and growing pathological clots. Delivery of ATAs using biomimetic synthetic carriers, host blood cells, and recombinant fusion proteins that are activated preferentially at sites of thrombus development has shown promising outcomes in preclinical models. Further development and translation of ADDSs that spare hemostatic fibrin clots hold promise for extending the utility of ATAs in the management of acute thrombotic disorders through rapid, transient, and targeted thromboprophylaxis. If the potential benefit of this technology is to be realized, a systematic and concerted effort is required to develop clinical trials and translate the use of ADDSs to the clinical arena.
Assuntos
Sistemas de Liberação de Medicamentos/métodos , Fibrinolíticos/administração & dosagem , Trombose/tratamento farmacológico , Animais , Disponibilidade Biológica , Vasos Sanguíneos/efeitos dos fármacos , Vasos Sanguíneos/metabolismo , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Fibrinolíticos/farmacocinética , Meia-Vida , HumanosRESUMO
Thrombin generates fibrin and activates platelets and endothelium, causing thrombosis and inflammation. Endothelial thrombomodulin (TM) changes thrombin's substrate specificity toward cleavage of plasma protein C into activated protein C (APC), which opposes its thrombotic and inflammatory activities. Endogenous TM activity is suppressed in pathologic conditions, and antithrombotic interventions involving soluble TM are limited by rapid blood clearance. To overcome this problem, we fused TM with a single chain fragment (scFv) of an antibody targeted to red blood cells. scFv/TM catalyzes thrombin-mediated generation of activated protein C and binds to circulating RBCs without apparent damage, thereby prolonging its circulation time and bioavailability orders of magnitude compared with soluble TM. In animal models, a single dose of scFv/TM, but not soluble TM, prevents platelet activation and vascular occlusion by clots. Thus, scFv/TM serves as a prodrug and provides thromboprophylaxis at low doses (0.15 mg/kg) via multifaceted mechanisms inhibiting platelets and coagulation.
Assuntos
Quimioprevenção/métodos , Sistemas de Liberação de Medicamentos/métodos , Eritrócitos/efeitos dos fármacos , Trombomodulina/administração & dosagem , Trombose/prevenção & controle , Animais , Células Cultivadas , Drosophila , Eritrócitos/metabolismo , Eritrócitos/fisiologia , Humanos , Camundongos , Modelos Biológicos , Terapia de Alvo Molecular/métodos , Ligação Proteica , Proteína C/metabolismo , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/uso terapêutico , Anticorpos de Cadeia Única/administração & dosagem , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/metabolismo , Anticorpos de Cadeia Única/uso terapêutico , Trombomodulina/química , Trombomodulina/metabolismo , Trombomodulina/uso terapêuticoRESUMO
Thrombomodulin (TM) is a glycoprotein normally present in the membrane of endothelial cells that binds thrombin and changes its substrate specificity to produce activated protein C (APC) that has antithrombotic and anti-inflammatory features. To compensate for loss of endogenous TM in pathology, we have fused recombinant TM with single chain variable fragment (scFv) of an antibody to mouse platelet endothelial cell adhesion molecule-1 (PECAM). This fusion, anti-PECAM scFv/TM, anchors on the endothelium, stimulates APC production, and provides therapeutic benefits superior to sTM in animal models of acute thrombosis and inflammation. However, in conditions of oxidative stress typical of vascular inflammation, TM is inactivated via oxidation of the methionine 388 (M388) residue. Capitalizing on the reports that M388L mutation renders TM resistant to oxidative inactivation, in this study we designed a mutant anti-PECAM scFv/TM M388L. This mutant has the same APC-producing capacity and binding to target cells, yet, in contrast to wild-type fusion, it retains APC-producing activity in an oxidizing environment in vitro and in vivo. Therefore, oxidant resistant mutant anti-PECAM scFv/TM M388L is a preferable targeted biotherapeutic to compensate for loss of antithrombotic and anti-inflammatory TM functions in the context of vascular oxidative stress.
Assuntos
Coagulação Sanguínea/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Molécula-1 de Adesão Celular Endotelial a Plaquetas/farmacologia , Proteína C/biossíntese , Proteínas Recombinantes de Fusão/farmacologia , Trombomodulina/genética , Animais , Linhagem Celular , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Tempo de Tromboplastina Parcial , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Ligação Proteica , Proteínas Recombinantes de Fusão/genética , Anticorpos de Cadeia Única/genética , Especificidade por Substrato , Trombina/metabolismoRESUMO
Plasma HDL levels are inversely associated with atherosclerosis. Inbred mouse strains differ in plasma HDL levels and susceptibility to atherosclerosis. Atherosclerosis-susceptible C57BL/6J mice possess plasma HDL levels 2-fold lower than atherosclerosis-resistant FVB/NJ mice. Polymorphisms have been previously identified between the two mouse strains in the major HDL apolipoproteins, ApoA-I and ApoA-II, which may affect their function on HDL. To begin to understand the HDL differences, we here report on a detailed comparison of the lipid-associated functions of the two mouse ApoA-I proteins. We demonstrate that these polymorphisms significantly alter the protein self-association properties, the ability of the proteins to clear lipid micelles from solution, and their binding affinity for mature mouse HDL. The changes in lipid binding do not appear to alter the ability of the protein to promote cholesterol efflux from cells or the formation of nascent HDL from primary hepatocytes. These apolipoprotein polymorphisms do not change the rate at which HDL protein or cholesterol are catabolized in vivo. Although the presence of the polymorphisms in ApoA-I alters important factors in HDL formation, the basis for the differences in the HDL plasma levels observed in the various mouse strains is more complex and requires additional investigation.
Assuntos
Apolipoproteína A-I/genética , HDL-Colesterol/metabolismo , Polimorfismo Genético , Animais , Apolipoproteína A-I/metabolismo , Transporte Biológico/genética , Linhagem Celular , HDL-Colesterol/biossíntese , HDL-Colesterol/sangue , Ativação Enzimática/genética , Feminino , Humanos , Fígado/metabolismo , Camundongos , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismoRESUMO
In this review we discuss the limited efficacy for current pharmacological agents used in prophylaxis and treatment of thrombosis and highlight targeted delivery of anti-thrombotic agents to fibrin, platelets, red blood cells and endothelium.
Assuntos
Antitrombinas/administração & dosagem , Sistemas de Liberação de Medicamentos , Trombose/tratamento farmacológico , Antitrombinas/uso terapêutico , HumanosRESUMO
The endothelium is one of the key targets for pharmacological interventions in oxidative stress and thrombosis, two conditions that are notoriously difficult to treat due to limited efficacy and precision of action of current drugs. Design of molecular and nano-devices that deliver potent antioxidant and antithrombotic therapeutic enzymes to the endothelium holds promise to improve the potency, localization, timing, specificity, safety, and mechanistic precision of these interventions. In particular, cell adhesion molecules expressed on the surface of resting and pathologically altered endothelial cells can be used for drug delivery to the endothelial surface (preferable for thrombolytics) and into intracellular compartments (preferable for antioxidants). Drug delivery platforms including protein conjugates, recombinant fusion constructs, and stealth polymer carriers designed to target these drugs to endothelium are reviewed in this article.
Assuntos
Antioxidantes/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Endotélio Vascular/efeitos dos fármacos , Fibrinolíticos/administração & dosagem , HumanosRESUMO
Accelerated atherosclerosis is a major cause of morbidity and death in insulin-resistant states such as obesity and the metabolic syndrome, but the underlying mechanisms are poorly understood. We show that macrophages from obese (ob/ob) mice have increased binding and uptake of oxidized LDL, in part due to a post-transcriptional increase in CD36 protein. Macrophages from ob/ob mice are also insulin resistant, as shown by reduced expression and signaling of insulin receptors. Three lines of evidence indicate that the increase in CD36 is caused by defective insulin signaling: (a) Treatment of wild-type macrophages with LY294002, an inhibitor of insulin signaling via PI3K, results in an increase in CD36; (b) insulin receptor knockout macrophages show a post-transcriptional increase in CD36 protein; and (c) administration of thiazolidinediones to intact ob/ob mice and ob/ob, LDL receptor-deficient mice results in a reversal of macrophage insulin receptor defects and decreases CD36 protein. The last finding contrasts with the increase in CD36 that results from treatment of macrophages with these drugs ex vivo. The results suggest that defective macrophage insulin signaling predisposes to foam cell formation and atherosclerosis in insulin-resistant states and that this is reversed in vivo by treatment with PPAR-gamma activators.
Assuntos
Antígenos CD36/biossíntese , Insulina/metabolismo , Macrófagos/imunologia , Transdução de Sinais , Animais , Northern Blotting , Western Blotting , Cromonas/farmacologia , Eletroforese em Gel de Poliacrilamida , Inibidores Enzimáticos/farmacologia , Células Espumosas/metabolismo , Glutationa/metabolismo , Hipoglicemiantes/farmacologia , Resistência à Insulina , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Morfolinas/farmacologia , Oxigênio/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Ligação Proteica , Receptores Citoplasmáticos e Nucleares/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rosiglitazona , Tiazolidinedionas/farmacologia , Fatores de Tempo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Tirosina/metabolismoRESUMO
The use of targeted therapeutics to replenish pathologically deficient proteins on the luminal endothelial membrane has the potential to revolutionize emergency and cardiovascular medicine. Untargeted recombinant proteins, like activated protein C (APC) and thrombomodulin (TM), have demonstrated beneficial effects in acute vascular disorders, but have failed to have a major impact on clinical care. We recently reported that TM fused with an scFv antibody fragment to platelet endothelial cell adhesion molecule-1 (PECAM-1) exerts therapeutic effects superior to untargeted TM. PECAM-1 is localized to cell-cell junctions, however, whereas the endothelial protein C receptor (EPCR), the key co-factor of TM/APC, is exposed in the apical membrane. Here we tested whether anchoring TM to the intercellular adhesion molecule (ICAM-1) favors scFv/TM collaboration with EPCR. Indeed: i) endothelial targeting scFv/TM to ICAM-1 provides ~15-fold greater activation of protein C than its PECAM-targeted counterpart; ii) blocking EPCR reduces protein C activation by scFv/TM anchored to endothelial ICAM-1, but not PECAM-1; and iii) anti-ICAM scFv/TM fusion provides more profound anti-inflammatory effects than anti-PECAM scFv/TM in a mouse model of acute lung injury. These findings, obtained using new translational constructs, emphasize the importance of targeting protein therapeutics to the proper surface determinant, in order to optimize their microenvironment and beneficial effects.
Assuntos
Lesão Pulmonar Aguda/terapia , Antígenos CD/imunologia , Imunoconjugados/imunologia , Molécula 1 de Adesão Intercelular/imunologia , Receptores de Superfície Celular/imunologia , Anticorpos de Cadeia Única/imunologia , Trombomodulina/metabolismo , Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/patologia , Animais , Linhagem Celular , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/imunologia , Receptor de Proteína C Endotelial , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/imunologia , Endotélio Vascular/patologia , Humanos , Imunoconjugados/química , Imunoconjugados/farmacologia , Junções Intercelulares/efeitos dos fármacos , Junções Intercelulares/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Terapia de Alvo Molecular , Molécula-1 de Adesão Celular Endotelial a Plaquetas/imunologia , Proteína C/agonistas , Proteína C/metabolismo , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/farmacologia , Trombomodulina/química , Trombomodulina/imunologiaRESUMO
Thrombomodulin-bound thrombin cleaves protein C (PC) zymogen in blood plasma producing activated protein C (APC), which exerts anti-coagulant, anti-inflammatory, anti-apoptotic and CNS-protective effects. Recombinant APC and thrombomodulin (TM) are both in clinical studies for management of acute conditions including sepsis. Methods that permit accurate measurement of APC in plasma are needed for clinical monitoring and mechanistic studies in animal models. However, the two existing methods require either long incubation periods with substrate, resulting in high background or they also recognize protein C inhibitor (PCI) complexed with APC (APC:PCI), which convolutes analysis of the amount of APC generated. Here we describe a robust quantitative in vivo assay that measures APC generation at both low levels of human protein C seen in chronic inflammatory disease and at physiological levels that shows a >99% fit with in vitro data.
Assuntos
Precursores Enzimáticos/metabolismo , Proteína C/metabolismo , Trombina/metabolismo , Trombomodulina/metabolismo , Animais , Bovinos , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Precursores Enzimáticos/sangue , Ensaio de Imunoadsorção Enzimática , Humanos , Cinética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Trombina/farmacologiaRESUMO
Humans have two major high density lipoprotein (HDL) sub-fractions, HDL(2) and HDL(3), whereas mice have a monodisperse HDL profile. Epidemiological evidence has suggested that HDL(2) is more atheroprotective; however, currently there is no direct experimental evidence to support this postulate. The amino acid sequence of apoA-I is a primary determinant of HDL subclass formation. The majority of the alpha-helical repeats in human apoA-I are proline-punctuated. A notable exception is the boundary between helices 7 and 8, which is located in the transitional segment between the stable N-terminal domain and the C-terminal hydrophobic domain. In this study we ask whether the substitution of a proline-containing sequence (PCS) separating other helices in human apoA-I for the non-proline-containing sequence (NPCS) between helices 7 and 8 (residues 184-190) influences HDL subclass association. The human apoA-I mutant with PCS2 replacing NPCS preferentially bound to HDL(2). In contrast, the mutant where PCS3 replaced NPCS preferentially associated with HDL(3). Thus, the specific amino acid sequence between helices 7 and 8 influences HDL subclass association. The wild-type and mutant proteins exhibited similar physicochemical properties except that the two mutants displayed greater lipid-associated stability versus wild-type human apoA-I. These results focus new attention on the influence of the boundary between helices 7 and 8 on the properties of apoA-I. The expression of these mutants in mice may result in the preferential generation of HDL(2) or HDL(3) and allow us to examine experimentally the anti-atherogenicity of the HDL subclasses.