Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Physiol Rev ; 103(1): 391-432, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35953269

RESUMO

The heart is imbued with a vast lymphatic network that is responsible for fluid homeostasis and immune cell trafficking. Disturbances in the forces that regulate microvascular fluid movement can result in myocardial edema, which has profibrotic and proinflammatory consequences and contributes to cardiovascular dysfunction. This review explores the complex relationship between cardiac lymphatics, myocardial edema, and cardiac disease. It covers the revised paradigm of microvascular forces and fluid movement around the capillary as well as the arsenal of preclinical tools and animal models used to model myocardial edema and cardiac disease. Clinical studies of myocardial edema and their prognostic significance are examined in parallel to the recent elegant animal studies discerning the pathophysiological role and therapeutic potential of cardiac lymphatics in different cardiovascular disease models. This review highlights the outstanding questions of interest to both basic scientists and clinicians regarding the roles of cardiac lymphatics in health and disease.


Assuntos
Edema Cardíaco , Cardiopatias , Vasos Linfáticos , Animais , Modelos Animais de Doenças , Edema Cardíaco/fisiopatologia , Cardiopatias/fisiopatologia , Vasos Linfáticos/fisiopatologia
2.
Immunity ; 51(4): 682-695.e6, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31353223

RESUMO

Innate lymphocytes maintain tissue homeostasis at mucosal barriers, with group 2 innate lymphoid cells (ILC2s) producing type 2 cytokines and controlling helminth infection. While the molecular understanding of ILC2 responses has advanced, the complexity of microenvironmental factors impacting ILC2s is becoming increasingly apparent. Herein, we used single-cell analysis to explore the diversity of gene expression among lung lymphocytes during helminth infection. Following infection, we identified a subset of ILC2s that preferentially expressed Il5-encoding interleukin (IL)-5, together with Calca-encoding calcitonin gene-related peptide (CGRP) and its cognate receptor components. CGRP in concert with IL-33 and neuromedin U (NMU) supported IL-5 but constrained IL-13 expression and ILC2 proliferation. Without CGRP signaling, ILC2 responses and worm expulsion were enhanced. Collectively, these data point to CGRP as a context-dependent negative regulatory factor that shapes innate lymphocyte responses to alarmins and neuropeptides during type 2 innate immune responses.


Assuntos
Inflamação/imunologia , Linfócitos/imunologia , Nippostrongylus/fisiologia , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Infecções por Strongylida/imunologia , Animais , Células Cultivadas , Citocinas/metabolismo , Imunidade Inata , Interleucina-33/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuropeptídeos/metabolismo , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/genética , Análise de Célula Única , Células Th2/imunologia , Quimeras de Transplante
3.
Nature ; 589(7843): 591-596, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33361809

RESUMO

Haematopoietic stem cells (HSCs) reside in specialized microenvironments in the bone marrow-often referred to as 'niches'-that represent complex regulatory milieux influenced by multiple cellular constituents, including nerves1,2. Although sympathetic nerves are known to regulate the HSC niche3-6, the contribution of nociceptive neurons in the bone marrow remains unclear. Here we show that nociceptive nerves are required for enforced HSC mobilization and that they collaborate with sympathetic nerves to maintain HSCs in the bone marrow. Nociceptor neurons drive granulocyte colony-stimulating factor (G-CSF)-induced HSC mobilization via the secretion of calcitonin gene-related peptide (CGRP). Unlike sympathetic nerves, which regulate HSCs indirectly via the niche3,4,6, CGRP acts directly on HSCs via receptor activity modifying protein 1 (RAMP1) and the calcitonin receptor-like receptor (CALCRL) to promote egress by activating the Gαs/adenylyl cyclase/cAMP pathway. The ingestion of food containing capsaicin-a natural component of chili peppers that can trigger the activation of nociceptive neurons-significantly enhanced HSC mobilization in mice. Targeting the nociceptive nervous system could therefore represent a strategy to improve the yield of HSCs for stem cell-based therapeutic agents.


Assuntos
Vias Autônomas , Movimento Celular , Células-Tronco Hematopoéticas/citologia , Nociceptividade/fisiologia , Nociceptores/fisiologia , Sistema Nervoso Simpático/citologia , Adenilil Ciclases/metabolismo , Animais , Vias Autônomas/efeitos dos fármacos , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Proteína Semelhante a Receptor de Calcitonina/metabolismo , Capsaicina/farmacologia , Movimento Celular/efeitos dos fármacos , AMP Cíclico/metabolismo , Feminino , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Fator Estimulador de Colônias de Granulócitos/metabolismo , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nociceptividade/efeitos dos fármacos , Nociceptores/efeitos dos fármacos , Proteína 1 Modificadora da Atividade de Receptores/metabolismo , Transdução de Sinais/efeitos dos fármacos , Nicho de Células-Tronco , Sistema Nervoso Simpático/efeitos dos fármacos
4.
Circ Res ; 132(9): 1185-1202, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37104556

RESUMO

Numerous clinical studies have revealed the utility of circulating AM (adrenomedullin) or MR-proAM (mid-regional proAM 45-92) as an effective prognostic and diagnostic biomarker for a variety of cardiovascular-related pathophysiologies. Thus, there is strong supporting evidence encouraging the exploration of the AM-CLR (calcitonin receptor-like receptor) signaling pathway as a therapeutic target. This is further bolstered because several drugs targeting the shared CGRP (calcitonin gene-related peptide)-CLR pathway are already Food and Drug Administration-approved and on the market for the treatment of migraine. In this review, we summarize the AM-CLR signaling pathway and its modulatory mechanisms and provide an overview of the current understanding of the physiological and pathological roles of AM-CLR signaling and the yet untapped potentials of AM as a biomarker or therapeutic target in cardiac and vascular diseases and provide an outlook on the recently emerged strategies that may provide further boost to the possible clinical applications of AM signaling.


Assuntos
Adrenomedulina , Sistema Cardiovascular , Adrenomedulina/genética , Adrenomedulina/metabolismo , Peptídeo Relacionado com Gene de Calcitonina , Sistema Cardiovascular/metabolismo , Proteína 2 Modificadora da Atividade de Receptores/metabolismo , Transdução de Sinais , Humanos
5.
Arch Biochem Biophys ; 752: 109882, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38211639

RESUMO

G protein-coupled receptor 30 (GPR30), also named G protein-coupled estrogen receptor (GPER), and the ß1-adrenergic receptor (ß1AR) are G protein-coupled receptors (GPCR) that are implicated in breast cancer progression. Both receptors contain PSD-95/Discs-large/ZO-1 homology (PDZ) motifs in their C-terminal tails through which they interact in the plasma membrane with membrane-associated guanylate kinase (MAGUK) scaffold proteins, and in turn protein kinase A anchoring protein (AKAP) 5. GPR30 constitutively and PDZ-dependently inhibits ß1AR-mediated cAMP production. We hypothesized that this inhibition is a consequence of a plasma membrane complex of these receptors. Using co-immunoprecipitation, confocal immunofluorescence microscopy, and bioluminescence resonance energy transfer (BRET), we show that GPR30 and ß1AR reside in close proximity in a plasma membrane complex when transiently expressed in HEK293. Deleting the GPR30 C-terminal PDZ motif (-SSAV) does not interfere with the receptor complex, indicating that the complex is not PDZ-dependent. MCF7 breast cancer cells express GPR30, ß1AR, MAGUKs, and AKAP5 in the plasma membrane, and co-immunoprecipitation revealed that these proteins exist in close proximity also under native conditions. Furthermore, expression of GPR30 in MCF7 cells constitutively and PDZ-dependently inhibits ß1AR-mediated cAMP production. AKAP5 also inhibits ß1AR-mediated cAMP production, which is not additive with GPR30-promoted inhibition. These results argue that GPR30 and ß1AR form a PDZ-independent complex in MCF7 cells through which GPR30 constitutively and PDZ-dependently inhibits ß1AR signaling via receptor interaction with MAGUKs and AKAP5.


Assuntos
Neoplasias da Mama , Proteínas Quinases Dependentes de AMP Cíclico , Feminino , Humanos , Proteínas de Ancoragem à Quinase A/metabolismo , Proteínas de Transporte/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Guanilato Quinases , Células HEK293 , Células MCF-7 , Receptores Adrenérgicos/metabolismo , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
6.
Circ Res ; 130(1): 5-23, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34789016

RESUMO

BACKGROUND: The adherens protein VE-cadherin (vascular endothelial cadherin) has diverse roles in organ-specific lymphatic vessels. However, its physiological role in cardiac lymphatics and its interaction with lymphangiogenic factors has not been fully explored. We sought to determine the spatiotemporal functions of VE-cadherin in cardiac lymphatics and mechanistically elucidate how VE-cadherin loss influences prolymphangiogenic signaling pathways, such as adrenomedullin and VEGF (vascular endothelial growth factor)-C/VEGFR3 (vascular endothelial growth factor receptor 3) signaling. METHODS: Cdh5flox/flox;Prox1CreERT2 mice were used to delete VE-cadherin in lymphatic endothelial cells across life stages, including embryonic, postnatal, and adult. Lymphatic architecture and function was characterized using immunostaining and functional lymphangiography. To evaluate the impact of temporal and functional regression of cardiac lymphatics in Cdh5flox/flox;Prox1CreERT2 mice, left anterior descending artery ligation was performed and cardiac function and repair after myocardial infarction was evaluated by echocardiography and histology. Cellular effects of VE-cadherin deletion on lymphatic signaling pathways were assessed by knockdown of VE-cadherin in cultured lymphatic endothelial cells. RESULTS: Embryonic deletion of VE-cadherin produced edematous embryos with dilated cardiac lymphatics with significantly altered vessel tip morphology. Postnatal deletion of VE-cadherin caused complete disassembly of cardiac lymphatics. Adult deletion caused a temporal regression of the quiescent epicardial lymphatic network which correlated with significant dermal and cardiac lymphatic dysfunction, as measured by fluorescent and quantum dot lymphangiography, respectively. Surprisingly, despite regression of cardiac lymphatics, Cdh5flox/flox;Prox1CreERT2 mice exhibited preserved cardiac function, both at baseline and following myocardial infarction, compared with control mice. Mechanistically, loss of VE-cadherin leads to aberrant cellular internalization of VEGFR3, precluding the ability of VEGFR3 to be either canonically activated by VEGF-C or noncanonically transactivated by adrenomedullin signaling, impairing downstream processes such as cellular proliferation. CONCLUSIONS: VE-cadherin is an essential scaffolding protein to maintain prolymphangiogenic signaling nodes at the plasma membrane, which are required for the development and adult maintenance of cardiac lymphatics, but not for cardiac function basally or after injury.


Assuntos
Antígenos CD/metabolismo , Caderinas/metabolismo , Vasos Linfáticos/metabolismo , Pericárdio/metabolismo , Transdução de Sinais , Animais , Antígenos CD/genética , Caderinas/genética , Células Cultivadas , Feminino , Humanos , Vasos Linfáticos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo
7.
Nature ; 559(7714): 356-362, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29973725

RESUMO

Arteries and veins are specified by antagonistic transcriptional programs. However, during development and regeneration, new arteries can arise from pre-existing veins through a poorly understood process of cell fate conversion. Here, using single-cell RNA sequencing and mouse genetics, we show that vein cells of the developing heart undergo an early cell fate switch to create a pre-artery population that subsequently builds coronary arteries. Vein cells underwent a gradual and simultaneous switch from venous to arterial fate before a subset of cells crossed a transcriptional threshold into the pre-artery state. Before the onset of coronary blood flow, pre-artery cells appeared in the immature vessel plexus, expressed mature artery markers, and decreased cell cycling. The vein-specifying transcription factor COUP-TF2 (also known as NR2F2) prevented plexus cells from overcoming the pre-artery threshold by inducing cell cycle genes. Thus, vein-derived coronary arteries are built by pre-artery cells that can differentiate independently of blood flow upon the release of inhibition mediated by COUP-TF2 and cell cycle factors.


Assuntos
Artérias/citologia , Vasos Coronários/citologia , Análise de Célula Única , Células-Tronco/citologia , Células-Tronco/metabolismo , Veias/citologia , Animais , Artérias/metabolismo , Fator II de Transcrição COUP/metabolismo , Ciclo Celular/genética , Diferenciação Celular , Linhagem da Célula , Vasos Coronários/metabolismo , Feminino , Masculino , Camundongos , Análise de Sequência de RNA , Veias/metabolismo
8.
Annu Rev Med ; 72: 167-182, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33502903

RESUMO

The lymphatic system has received increasing scientific and clinical attention because a wide variety of diseases are linked to lymphatic pathologies and because the lymphatic system serves as an ideal conduit for drug delivery. Lymphatic vessels exert heterogeneous roles in different organs and vascular beds, and consequently, their dysfunction leads to distinct organ-specific outcomes. Although studies in animal model systems have led to the identification of crucial lymphatic genes with potential therapeutic benefit, effective lymphatic-targeted therapeutics are currently lacking for human lymphatic pathological conditions. Here, we focus on the therapeutic roles of lymphatic vessels in diseases and summarize the promising therapeutic targets for modulating lymphangiogenesis or lymphatic function in preclinical or clinical settings. We also discuss considerations for drug delivery or targeting of lymphatic vessels for treatment of lymphatic-related diseases. The lymphatic vasculature is rapidly emerging as a critical system for targeted modulation of its function and as a vehicle for innovative drug delivery.


Assuntos
Linfangiogênese/efeitos dos fármacos , Doenças Linfáticas/tratamento farmacológico , Vasos Linfáticos/patologia , Preparações Farmacêuticas/administração & dosagem , Animais , Vias de Administração de Medicamentos , Humanos , Doenças Linfáticas/diagnóstico
9.
Reproduction ; 166(1): 1-11, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37078791

RESUMO

In brief: Healthy development of the placenta is dependent on trophoblast cell migration and reduced oxidative stress presence. This article describes how a phytoestrogen found in spinach and soy causes impaired placental development during pregnancy. Abstract: Although vegetarianism has grown in popularity, especially among pregnant women, the effects of phytoestrogens in placentation lack understanding. Factors such as cellular oxidative stress and hypoxia and external factors including cigarette smoke, phytoestrogens, and dietary supplements can regulate placental development. The isoflavone phytoestrogen coumestrol was identified in spinach and soy and was found to not cross the fetal-placental barrier. Since coumestrol could be a valuable supplement or potent toxin during pregnancy, we sought to examine its role in trophoblast cell function and placentation in murine pregnancy. After treating trophoblast cells (HTR8/SVneo) with coumestrol and performing an RNA microarray, we determined 3079 genes were significantly changed with the top differentially changed pathways related to the oxidative stress response, cell cycle regulation, cell migration, and angiogenesis. Upon treatment with coumestrol, trophoblast cells exhibited reduced migration and proliferation. Additionally, we observed increased reactive oxygen species accumulation with coumestrol administration. We then examined the role of coumestrol within an in vivo pregnancy by treating wildtype pregnant mice with coumestrol or vehicle from day 0 to 12.5 of gestation. Upon euthanasia, fetal and placental weights were significantly decreased in coumestrol-treated animals with the placenta exhibiting a proportional decrease with no obvious changes in morphology. Therefore, we conclude that coumestrol impairs trophoblast cell migration and proliferation, causes accumulation of reactive oxygen species, and reduces fetal and placental weights in murine pregnancy.


Assuntos
Cumestrol , Placenta , Gravidez , Feminino , Camundongos , Humanos , Animais , Placenta/metabolismo , Cumestrol/farmacologia , Cumestrol/metabolismo , Fitoestrógenos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular , Placentação/fisiologia , Trofoblastos/metabolismo , Estresse Oxidativo
10.
Proc Natl Acad Sci U S A ; 116(48): 24093-24099, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31712427

RESUMO

Receptor-activity-modifying proteins (RAMPs) are single transmembrane-spanning proteins which serve as molecular chaperones and allosteric modulators of G-protein-coupled receptors (GPCRs) and their signaling pathways. Although RAMPs have been previously studied in the context of their effects on Family B GPCRs, the coevolution of RAMPs with many GPCR families suggests an expanded repertoire of potential interactions. Using bioluminescence resonance energy transfer-based and cell-surface expression approaches, we comprehensively screen for RAMP interactions within the chemokine receptor family and identify robust interactions between RAMPs and nearly all chemokine receptors. Most notably, we identify robust RAMP interaction with atypical chemokine receptors (ACKRs), which function to establish chemotactic gradients for directed cell migration. Specifically, RAMP3 association with atypical chemokine receptor 3 (ACKR3) diminishes adrenomedullin (AM) ligand availability without changing G-protein coupling. Instead, RAMP3 is required for the rapid recycling of ACKR3 to the plasma membrane through Rab4-positive vesicles following either AM or SDF-1/CXCL12 binding, thereby enabling formation of dynamic spatiotemporal chemotactic gradients. Consequently, genetic deletion of either ACKR3 or RAMP3 in mice abolishes directed cell migration of retinal angiogenesis. Thus, RAMP association with chemokine receptor family members represents a molecular interaction to control receptor signaling and trafficking properties.


Assuntos
Proteína 3 Modificadora da Atividade de Receptores/fisiologia , Receptores CCR3/metabolismo , Técnicas de Transferência de Energia por Ressonância de Bioluminescência , Movimento Celular , Células HEK293 , Humanos , Lisossomos/metabolismo , Neovascularização Fisiológica , Proteína 3 Modificadora da Atividade de Receptores/genética , Proteína 3 Modificadora da Atividade de Receptores/metabolismo , Receptores CXCR/metabolismo , Transdução de Sinais
11.
Int J Mol Sci ; 23(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35628521

RESUMO

Numerous studies have focused on the molecular signaling pathways that govern the development and growth of lymphatics in the hopes of elucidating promising druggable targets. G protein-coupled receptors (GPCRs) are currently the largest family of membrane receptors targeted by FDA-approved drugs, but there remain many unexplored receptors, including orphan GPCRs with no known biological ligand or physiological function. Thus, we sought to illuminate the cadre of GPCRs expressed at high levels in lymphatic endothelial cells and identified four orphan receptors: GPRC5B, AGDRF5/GPR116, FZD8 and GPR61. Compared to blood endothelial cells, GPRC5B is the most abundant GPCR expressed in cultured human lymphatic endothelial cells (LECs), and in situ RNAscope shows high mRNA levels in lymphatics of mice. Using genetic engineering approaches in both zebrafish and mice, we characterized the function of GPRC5B in lymphatic development. Morphant gprc5b zebrafish exhibited failure of thoracic duct formation, and Gprc5b-/- mice suffered from embryonic hydrops fetalis and hemorrhage associated with subcutaneous edema and blood-filled lymphatic vessels. Compared to Gprc5+/+ littermate controls, Gprc5b-/- embryos exhibited attenuated developmental lymphangiogenesis. During the postnatal period, ~30% of Gprc5b-/- mice were growth-restricted or died prior to weaning, with associated attenuation of postnatal cardiac lymphatic growth. In cultured human primary LECs, expression of GPRC5B is required to maintain cell proliferation and viability. Collectively, we identify a novel role for the lymphatic-enriched orphan GPRC5B receptor in lymphangiogenesis of fish, mice and human cells. Elucidating the roles of orphan GPCRs in lymphatics provides new avenues for discovery of druggable targets to treat lymphatic-related conditions such as lymphedema and cancer.


Assuntos
Células Endoteliais , Receptores Acoplados a Proteínas G/metabolismo , Peixe-Zebra , Animais , Células Cultivadas , Células Endoteliais/metabolismo , Camundongos , Transdução de Sinais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
12.
Int J Mol Sci ; 23(24)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36555690

RESUMO

Calcitonin gene-related peptide (CGRP) is a key component of migraine pathophysiology, yielding effective migraine therapeutics. CGRP receptors contain a core accessory protein subunit: receptor activity-modifying protein 1 (RAMP1). Understanding of RAMP1 expression is incomplete, partly due to the challenges in identifying specific and validated antibody tools. We profiled antibodies for immunodetection of RAMP1 using Western blotting, immunocytochemistry and immunohistochemistry, including using RAMP1 knockout mouse tissue. Most antibodies could detect RAMP1 in Western blotting and immunocytochemistry using transfected cells. Two antibodies (844, ab256575) could detect a RAMP1-like band in Western blots of rodent brain but not RAMP1 knockout mice. However, cross-reactivity with other proteins was evident for all antibodies. This cross-reactivity prevented clear conclusions about RAMP1 anatomical localization, as each antibody detected a distinct pattern of immunoreactivity in rodent brain. We cannot confidently attribute immunoreactivity produced by RAMP1 antibodies (including 844) to the presence of RAMP1 protein in immunohistochemical applications in brain tissue. RAMP1 expression in brain and other tissues therefore needs to be revisited using RAMP1 antibodies that have been comprehensively validated using multiple strategies to establish multiple lines of convincing evidence. As RAMP1 is important for other GPCR/ligand pairings, our results have broader significance beyond the CGRP field.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Transtornos de Enxaqueca , Camundongos , Animais , Proteína 1 Modificadora da Atividade de Receptores/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Imuno-Histoquímica , Transtornos de Enxaqueca/metabolismo
13.
Biol Reprod ; 105(4): 876-891, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34104954

RESUMO

Adrenomedullin (ADM) is an evolutionarily conserved multifunctional peptide hormone that regulates implantation, embryo spacing, and placentation in humans and rodents. However, the potential roles of ADM in implantation and placentation in pigs, as a litter-bearing species, are not known. This study determined abundances of ADM in uterine luminal fluid, and the patterns of expression of ADM and its receptor components (CALCRL, RAMP2, RAMP3, and ACKR3) in uteri from cyclic and pregnant gilts, as well as conceptuses (embryonic/fetus and its extra-embryonic membranes) during the peri-implantation period of pregnancy. Total recoverable ADM was greater in the uterine fluid of pregnant compared with cyclic gilts between Days 10 and 16 post-estrus and was from uterine luminal epithelial (LE) and conceptus trophectoderm (Tr) cells. Uterine expression of CALCRL, RAMP2, and ACKR3 were affected by day (P < 0.05), pregnant status (P < 0.01) and/or day x status (P < 0.05). Within porcine conceptuses, the expression of CALCRL, RAMP2, and ACKR3 increased between Days 10 and 16 of pregnancy. Using an established porcine trophectoderm (pTr1) cell line, it was determined that 10-7 M ADM stimulated proliferation of pTr1 cells (P < 0.05) at 48 h, and increased phosphorylated mechanistic target of rapamycin (p-MTOR) and 4E binding protein 1 (p-4EBP1) by 6.1- and 4.9-fold (P < 0.0001), respectively. These novel results indicate a significant role for ADM in uterine receptivity for implantation and conceptus growth and development in pigs. They also provide a framework for future studies of ADM signaling to affect proliferation and migration of Tr cells, spacing of blastocysts, implantation, and placentation in pigs.


Assuntos
Adrenomedulina/genética , Embrião de Mamíferos/metabolismo , Receptores de Adrenomedulina/genética , Sus scrofa/genética , Útero/metabolismo , Adrenomedulina/metabolismo , Animais , Feminino , Receptores de Adrenomedulina/imunologia , Análise Espaço-Temporal , Sus scrofa/embriologia
14.
Am J Pathol ; 190(3): 711-722, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32093901

RESUMO

Bronchopulmonary dysplasia (BPD)-associated pulmonary hypertension (PH) is an infantile lung disease characterized by aberrant angiogenesis and impaired resolution of lung injury. Adrenomedullin (AM) signals through calcitonin receptor-like receptor and receptor activity-modifying protein 2 and modulates lung injury initiation. However, its role in lung injury resolution and the mechanisms by which it regulates angiogenesis remain unclear. Consequently, we hypothesized that AM resolves hyperoxia-induced BPD and PH via endothelial nitric oxide synthase (NOS3). AM-sufficient (ADM+/+) or -deficient (ADM+/-) mice were exposed to normoxia or hyperoxia through postnatal days (PNDs) 1 to 14, and the hyperoxia-exposed mice were allowed to recover in normoxia for an additional 56 days. Lung injury and development and PH were quantified at different time points. Human pulmonary microvascular endothelial cells were also used to examine the effects of AM signaling on the NOS3 pathway and angiogenesis. Lung blood vessels and NOS3 expression decreased and the extent of hyperoxia-induced BPD and PH increased in ADM+/- mice compared with ADM+/+ mice. Hyperoxia-induced apoptosis and PH resolved by PND14 and PND70, respectively, in ADM+/+ mice but not in ADM+/- mice. Knockdown of ADM, calcitonin receptor-like receptor, and receptor activity-modifying protein 2 in vitro decreased NOS3 expression, nitric oxide generation, and angiogenesis. Furthermore, NOS3 knockdown abrogated the angiogenic effects of AM. Collectively, these results indicate that AM resolves hyperoxic lung injury via NOS3.


Assuntos
Adrenomedulina/farmacologia , Displasia Broncopulmonar/tratamento farmacológico , Hiperóxia/complicações , Hipertensão Pulmonar/tratamento farmacológico , Óxido Nítrico Sintase Tipo III/metabolismo , Animais , Displasia Broncopulmonar/etiologia , Displasia Broncopulmonar/fisiopatologia , Células Endoteliais/patologia , Feminino , Humanos , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/fisiopatologia , Pulmão/fisiopatologia , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo III/genética , Proteína 2 Modificadora da Atividade de Receptores/genética , Proteína 2 Modificadora da Atividade de Receptores/metabolismo , Transdução de Sinais
15.
Circ Res ; 124(1): 101-113, 2019 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-30582443

RESUMO

RATIONALE: Cardiac lymphangiogenesis contributes to the reparative process post-myocardial infarction, but the factors and mechanisms regulating it are not well understood. OBJECTIVE: To determine if epicardial-secreted factor AM (adrenomedullin; Adm=gene) improves cardiac lymphangiogenesis post-myocardial infarction via lateralization of Cx43 (connexin 43) in cardiac lymphatic vasculature. METHODS AND RESULTS: Firstly, we identified sex-dependent differences in cardiac lymphatic numbers in uninjured mice using light-sheet microscopy. Using a mouse model of Adm hi/hi ( Adm overexpression) and permanent left anterior descending ligation to induce myocardial infarction, we investigated cardiac lymphatic structure, growth, and function in injured murine hearts. Overexpression of Adm increased lymphangiogenesis and cardiac function post-myocardial infarction while suppressing cardiac edema and correlated with changes in Cx43 localization. Lymphatic function in response to AM treatment was attenuated in mice with a lymphatic-specific Cx43 deletion. In vitro experiments in cultured human lymphatic endothelial cells identified a novel mechanism to improve gap junction coupling by pharmaceutically targeting Cx43 with verapamil. Finally, we show that connexin protein expression in cardiac lymphatics is conserved between mouse and human. CONCLUSIONS: AM is an endogenous, epicardial-derived factor that drives reparative cardiac lymphangiogenesis and function via Cx43, and this represents a new therapeutic pathway for improving myocardial edema after injury.


Assuntos
Adrenomedulina/metabolismo , Conexina 43/metabolismo , Edema Cardíaco/metabolismo , Linfangiogênese , Vasos Linfáticos/metabolismo , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Pericárdio/metabolismo , Adrenomedulina/genética , Animais , Células Cultivadas , Conexina 43/genética , Modelos Animais de Doenças , Edema Cardíaco/genética , Edema Cardíaco/fisiopatologia , Edema Cardíaco/prevenção & controle , Feminino , Junções Comunicantes/metabolismo , Humanos , Vasos Linfáticos/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Infarto do Miocárdio/genética , Infarto do Miocárdio/fisiopatologia , Pericárdio/fisiopatologia , Transdução de Sinais , Função Ventricular Esquerda
16.
Am J Physiol Heart Circ Physiol ; 318(4): H895-H907, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32142379

RESUMO

Myocardial edema is a consequence of many cardiovascular stressors, including myocardial infarction, cardiac bypass surgery, and hypertension. The aim of this study was to establish a murine model of myocardial edema and elucidate the response of cardiac lymphatics and the myocardium. Myocardial edema without infarction was induced in mice by cauterizing the coronary sinus, increasing pressure in the coronary venous system, and inducing myocardial edema. In male mice, there was rapid development of edema 3 h following coronary sinus cauterization (CSC), with associated dilation of cardiac lymphatics. By 24 h, males displayed significant cardiovascular contractile dysfunction. In contrast, female mice exhibited a temporal delay in the formation of myocardial edema, with onset of cardiovascular dysfunction by 24 h. Furthermore, myocardial edema induced a ring of fibrosis around the epicardial surface of the left ventricle in both sexes that included fibroblasts, immune cells, and increased lymphatics. Interestingly, the pattern of fibrosis and the cells that make up the fibrotic epicardial ring differ between sexes. We conclude that a novel surgical model of myocardial edema without infarct was established in mice. Cardiac lymphatics compensated by exhibiting both an acute dilatory and chronic growth response. Transient myocardial edema was sufficient to induce a robust epicardial fibrotic and inflammatory response, with distinct sex differences, which underscores the sex-dependent differences that exist in cardiac vascular physiology.NEW & NOTEWORTHY Myocardial edema is a consequence of many cardiovascular stressors, including myocardial infarction, cardiac bypass surgery, and high blood pressure. Cardiac lymphatics regulate interstitial fluid balance and, in a myocardial infarction model, have been shown to be therapeutically targetable by increasing heart function. Cardiac lymphatics have only rarely been studied in a noninfarct setting in the heart, and so we characterized the first murine model of increased coronary sinus pressure to induce myocardial edema, demonstrating distinct sex differences in the response to myocardial edema. The temporal pattern of myocardial edema induction and resolution is different between males and females, underscoring sex-dependent differences in the response to myocardial edema. This model provides an important platform for future research in cardiovascular and lymphatic fields with the potential to develop therapeutic interventions for many common cardiovascular diseases.


Assuntos
Seio Coronário/cirurgia , Modelos Animais de Doenças , Edema Cardíaco/patologia , Animais , Pressão Sanguínea , Cauterização/efeitos adversos , Seio Coronário/patologia , Edema Cardíaco/etiologia , Edema Cardíaco/metabolismo , Feminino , Fibrose , Vasos Linfáticos/patologia , Vasos Linfáticos/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pericárdio/patologia
17.
Blood ; 132(18): 1951-1962, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30131434

RESUMO

RAP GTPases, important regulators of cellular adhesion, are abundant signaling molecules in the platelet/megakaryocytic lineage. However, mice lacking the predominant isoform, RAP1B, display a partial platelet integrin activation defect and have a normal platelet count, suggesting the existence of a RAP1-independent pathway to integrin activation in platelets and a negligible role for RAP GTPases in megakaryocyte biology. To determine the importance of individual RAP isoforms on platelet production and on platelet activation at sites of mechanical injury or vascular leakage, we generated mice with megakaryocyte-specific deletion (mKO) of Rap1a and/or Rap1b Interestingly, Rap1a/b-mKO mice displayed a marked macrothrombocytopenia due to impaired proplatelet formation by megakaryocytes. In platelets, RAP isoforms had redundant and isoform-specific functions. Deletion of RAP1B, but not RAP1A, significantly reduced α-granule secretion and activation of the cytoskeleton regulator RAC1. Both isoforms significantly contributed to thromboxane A2 generation and the inside-out activation of platelet integrins. Combined deficiency of RAP1A and RAP1B markedly impaired platelet aggregation, spreading, and clot retraction. Consistently, thrombus formation in physiological flow conditions was abolished in Rap1a/b-mKO, but not Rap1a-mKO or Rap1b-mKO, platelets. Rap1a/b-mKO mice were strongly protected from experimental thrombosis and exhibited a severe defect in hemostasis after mechanical injury. Surprisingly, Rap1a/b-mKO platelets were indistinguishable from controls in their ability to prevent blood-lymphatic mixing during development and hemorrhage at sites of inflammation. In summary, our studies demonstrate an essential role for RAP1 signaling in platelet integrin activation and a critical role in platelet production. Although important for hemostatic/thrombotic plug formation, platelet RAP1 signaling is dispensable for vascular integrity during development and inflammation.


Assuntos
Plaquetas/citologia , Deleção de Genes , Adesividade Plaquetária , Trombopoese , Proteínas rap de Ligação ao GTP/genética , Proteínas rap1 de Ligação ao GTP/genética , Animais , Plaquetas/metabolismo , Hemostasia , Integrinas/metabolismo , Camundongos , Camundongos Knockout , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Trombocitopenia/genética , Trombocitopenia/metabolismo , Proteínas rap de Ligação ao GTP/metabolismo , Proteínas rap1 de Ligação ao GTP/metabolismo
18.
Arterioscler Thromb Vasc Biol ; 38(10): 2410-2422, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30354217

RESUMO

Objective- Maintenance of lymphatic permeability is essential for normal lymphatic function during adulthood, but the precise signaling pathways that control lymphatic junctions during development are not fully elucidated. The Gs-coupled AM (adrenomedullin) signaling pathway is required for embryonic lymphangiogenesis and the maintenance of lymphatic junctions during adulthood. Thus, we sought to elucidate the downstream effectors mediating junctional stabilization in lymphatic endothelial cells. Approach and Results- We knocked-down both Rap1A and Rap1B isoforms in human neonatal dermal lymphatic cells (human lymphatic endothelial cells) and genetically deleted the mRap1 gene in lymphatic endothelial cells by producing 2 independent, conditional Rap1a/b knockout mouse lines. Rap1A/B knockdown caused disrupted junctional formation with hyperpermeability and impaired AM-induced lymphatic junctional tightening, as well as rescue of histamine-induced junctional disruption. Less than 60% of lymphatic- Rap1a/b knockout embryos survived to E13.5 exhibiting interstitial edema, blood-filled lymphatics, disrupted lymphovenous valves, and defective lymphangiogenesis. Consistently, inducible lymphatic- Rap1a/b deletion in adult animals prevented AM-rescue of histamine-induced lymphatic leakage and dilation. Conclusions- Rap1 (Ras-related protein) serves as the dominant effector downstream of AM to stabilize lymphatic junctions. Rap1 is required for maintaining lymphatic permeability and driving normal lymphatic development.


Assuntos
Adrenomedulina/farmacologia , Células Endoteliais/efeitos dos fármacos , Endotélio Linfático/efeitos dos fármacos , Junções Intercelulares/efeitos dos fármacos , Linfangiogênese/efeitos dos fármacos , Proteínas rap de Ligação ao GTP/metabolismo , Proteínas rap1 de Ligação ao GTP/metabolismo , Animais , Linhagem Celular , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Células Endoteliais/enzimologia , Células Endoteliais/patologia , Endotélio Linfático/enzimologia , Endotélio Linfático/patologia , Histamina/farmacologia , Humanos , Junções Intercelulares/enzimologia , Junções Intercelulares/patologia , Camundongos , Camundongos Knockout , Permeabilidade , Transdução de Sinais , Proteínas rap de Ligação ao GTP/genética , Proteínas rap1 de Ligação ao GTP/genética
19.
Crit Rev Biochem Mol Biol ; 51(1): 65-71, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26740457

RESUMO

Receptor activity modifying proteins (RAMPs) associate with G-protein-coupled receptors (GPCRs) at the plasma membrane and together bind a variety of peptide ligands, serving as a communication interface between the extracellular and intracellular environments. The collection of RAMP-interacting GPCRs continues to expand and now consists of GPCRs from families A, B and C, suggesting that RAMP activity is extremely prevalent. RAMP association with GPCRs can regulate GPCR function by altering ligand binding, receptor trafficking and desensitization, and downstream signaling pathways. Here, we elaborate on these RAMP-dependent mechanisms of GPCR regulation, which provide opportunities for pharmacological intervention.


Assuntos
Proteínas Modificadoras da Atividade de Receptores/fisiologia , Ligantes , Filogenia , Ligação Proteica , Proteínas Modificadoras da Atividade de Receptores/metabolismo , Transdução de Sinais
20.
Biol Reprod ; 97(3): 466-477, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29025060

RESUMO

Implantation is a complex event demanding contributions from both embryo and endometrium. Despite advances in assisted reproduction, endometrial receptivity defects persist as a barrier to successful implantation in women with infertility. We previously demonstrated that maternal haploinsufficiency for the endocrine peptide adrenomedullin (AM) in mice confers a subfertility phenotype characterized by defective uterine receptivity and sparse epithelial pinopode coverage. The strong link between AM and implantation suggested the compelling hypothesis that administration of AM prior to implantation may improve fertility, protect against pregnancy complications, and ultimately lead to better maternal and fetal outcomes. Here, we demonstrate that intrauterine delivery of AM prior to blastocyst transfer improves the embryo implantation rate and spacing within the uterus. We then use genetic decrease-of-function and pharmacologic gain-of-function mouse models to identify potential mechanisms by which AM confers enhanced implantation success. In epithelium, we find that AM accelerates the kinetics of pinopode formation and water transport and that, in stroma, AM promotes connexin 43 expression, gap junction communication, and barrier integrity of the primary decidual zone. Ultimately, our findings advance our understanding of the contributions of AM to uterine receptivity and suggest potential broad use for AM as therapy to encourage healthy embryo implantation, for example, in combination with in vitro fertilization.


Assuntos
Adrenomedulina/farmacologia , Endométrio/citologia , Endométrio/efeitos dos fármacos , Fármacos para a Fertilidade Feminina/farmacologia , Fertilidade/efeitos dos fármacos , Junções Intercelulares/efeitos dos fármacos , Útero/citologia , Útero/efeitos dos fármacos , Animais , Comunicação Celular/efeitos dos fármacos , Conexina 43/biossíntese , Decídua/citologia , Decídua/efeitos dos fármacos , Implantação do Embrião/efeitos dos fármacos , Transferência Embrionária , Feminino , Junções Comunicantes/efeitos dos fármacos , Humanos , Camundongos , Camundongos Knockout , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA