Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 50(3): 1382-1395, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35037038

RESUMO

Transcriptional regulation in response to thyroid hormone (3,5,3'-triiodo-l-thyronine, T3) is a dynamic and cell-type specific process that maintains cellular homeostasis and identity in all tissues. However, our understanding of the mechanisms of thyroid hormone receptor (TR) actions at the molecular level are actively being refined. We used an integrated genomics approach to profile and characterize the cistrome of TRß, map changes in chromatin accessibility, and capture the transcriptomic changes in response to T3 in normal human thyroid cells. There are significant shifts in TRß genomic occupancy in response to T3, which are associated with differential chromatin accessibility, and differential recruitment of SWI/SNF chromatin remodelers. We further demonstrate selective recruitment of BAF and PBAF SWI/SNF complexes to TRß binding sites, revealing novel differential functions in regulating chromatin accessibility and gene expression. Our findings highlight three distinct modes of TRß interaction with chromatin and coordination of coregulator activity.


Assuntos
Cromatina , Receptores beta dos Hormônios Tireóideos , Cromatina/genética , Montagem e Desmontagem da Cromatina , Regulação da Expressão Gênica , Humanos , Receptores beta dos Hormônios Tireóideos/genética , Receptores beta dos Hormônios Tireóideos/metabolismo , Hormônios Tireóideos , Fatores de Transcrição/metabolismo
2.
Mol Carcinog ; 60(12): 874-885, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34534367

RESUMO

The thyroid hormone receptor beta (TRß) is a tumor suppressor in multiple types of solid tumors, most prominently in breast and thyroid cancer. An increased understanding of the molecular mechanisms by which TRß abrogates tumorigenesis will aid in understanding the core tumor-suppressive functions of TRß. Here, we restored TRß expression in the MDA-MB-468 basal-like breast cancer cell line and perform RNA-sequencing to determine the TRß-mediated changes in gene expression and associated signaling pathways. The TRß expressing MDA-MB-468 cells exhibit a more epithelial character as determined by principle component analysis-based iterative PAM50 subtyping score and through reduced expression of mesenchymal cytokeratins. The epithelial to mesenchymal transition pathway is also significantly reduced. The MDA-MB-468 data set was further compared with RNA sequencing results from TRß expressing thyroid cancer cell line SW1736 to determine which genes are TRß correspondingly regulated across both cell types. Several pathways including lipid metabolism and chromatin remodeling processes were observed to be altered in the shared gene set. These data provide novel insights into the molecular mechanisms by which TRß suppresses breast tumorigenesis.


Assuntos
Neoplasias da Mama/genética , Perfilação da Expressão Gênica/métodos , Receptores beta dos Hormônios Tireóideos/genética , Neoplasias da Glândula Tireoide/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Metabolismo dos Lipídeos , Análise de Componente Principal , Análise de Sequência de RNA , Transdução de Sinais , Receptores beta dos Hormônios Tireóideos/metabolismo , Neoplasias da Glândula Tireoide/metabolismo
3.
J Cell Physiol ; 234(6): 8597-8609, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30515788

RESUMO

The RUNX1 transcription factor has recently been shown to be obligatory for normal development. RUNX1 controls the expression of genes essential for proper development in many cell lineages and tissues including blood, bone, cartilage, hair follicles, and mammary glands. Compromised RUNX1 regulation is associated with many cancers. In this review, we highlight evidence for RUNX1 control in both invertebrate and mammalian development and recent novel findings of perturbed RUNX1 control in breast cancer that has implications for other solid tumors. As RUNX1 is essential for definitive hematopoiesis, RUNX1 mutations in hematopoietic lineage cells have been implicated in the etiology of several leukemias. Studies of solid tumors have revealed a context-dependent function for RUNX1 either as an oncogene or a tumor suppressor. These RUNX1 functions have been reported for breast, prostate, lung, and skin cancers that are related to cancer subtypes and different stages of tumor development. Growing evidence suggests that RUNX1 suppresses aggressiveness in most breast cancer subtypes particularly in the early stage of tumorigenesis. Several studies have identified RUNX1 suppression of the breast cancer epithelial-to-mesenchymal transition. Most recently, RUNX1 repression of cancer stem cells and tumorsphere formation was reported for breast cancer. It is anticipated that these new discoveries of the context-dependent diversity of RUNX1 functions will lead to innovative therapeutic strategies for the intervention of cancer and other abnormalities of normal tissues.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Neoplasias/metabolismo , Animais , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Mutação , Neoplasias/genética , Neoplasias/patologia , Prognóstico , Transdução de Sinais
4.
Endocrinology ; 164(10)2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37702560

RESUMO

Thyroid hormone receptor beta (TRß) is a recognized tumor suppressor in numerous solid cancers. The molecular signaling of TRß has been elucidated in several cancer types through re-expression models. Remarkably, the potential impact of selective activation of endogenous TRß on tumor progression remains largely unexplored. We used cell-based and in vivo assays to evaluate the effects of the TRß agonist sobetirome (GC-1) on a particularly aggressive and dedifferentiated cancer, anaplastic thyroid cancer (ATC). Here we report that GC-1 reduced the tumorigenic phenotype, decreased cancer stem-like cell populations, and induced redifferentiation of the ATC cell lines with different mutational backgrounds. Of note, this selective activation of TRß amplified the effects of therapeutic agents in blunting the aggressive cell phenotype and stem cell growth. In xenograft assays, GC-1 alone inhibited tumor growth and was as effective as the kinase inhibitor, sorafenib. These results indicate that selective activation of TRß not only induces a tumor suppression program de novo but enhances the effectiveness of anticancer agents, revealing potential novel combination therapies for ATC and other aggressive solid tumors.


Assuntos
Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide , Feminino , Humanos , Animais , Camundongos , Carcinoma Anaplásico da Tireoide/tratamento farmacológico , Receptores beta dos Hormônios Tireóideos , Agressão , Neoplasias da Glândula Tireoide/tratamento farmacológico
5.
Endocrinology ; 163(12)2022 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-36240295

RESUMO

Anaplastic thyroid cancer (ATC) is one of the most lethal solid tumors, yet there are no effective, long-lasting treatments for ATC patients. Most tumors, including tumors of the endocrine system, exhibit an increased consumption of glucose to fuel cancer progression, and some cancers meet this high glucose requirement by metabolizing glycogen. Our goal was to determine whether ATC cells metabolize glycogen and if this could be exploited for treatment. We detected glycogen synthase and glycogen phosphorylase (PYG) isoforms in normal thyroid and thyroid cancer cell lines and patient-derived biopsy samples. Inhibition of PYG using CP-91,149 induced apoptosis in ATC cells but not normal thyroid cells. CP-91,149 decreased NADPH levels and induced reactive oxygen species accumulation. CP-91,149 severely blunted ATC tumor growth in vivo. Our work establishes glycogen metabolism as a novel metabolic process in thyroid cells, which presents a unique, oncogenic target that could offer an improved clinical outcome.


Assuntos
Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide , Feminino , Camundongos , Animais , Carcinoma Anaplásico da Tireoide/tratamento farmacológico , Espécies Reativas de Oxigênio , Linhagem Celular Tumoral , Neoplasias da Glândula Tireoide/patologia , Apoptose , Glucose/farmacologia , Glicogênio , Proliferação de Células
6.
J Biomol Tech ; 33(1)2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35836997

RESUMO

Core facilities have a ubiquitous and increasingly valuable presence at research institutions. Although many shared cores were originally created to provide routine services and access to complex and expensive instrumentation for the research community, they are frequently called upon by investigators to design protocols and procedures to help answer complex research questions. For instance, shared microscopy resources are evolving from providing access to and training on complex imaging instruments to developing detailed innovative protocols and experimental strategies, including sample preparation techniques, staining, complex imaging parameters, and high-level image analyses. These approaches require close intellectual collaboration between core staff and research investigators to formulate and coordinate plans for protocol development suited to the research question. Herein, we provide an example of such coordinated collaboration between a shared microscopy facility and a team of scientists and clinician-investigators to approach a complex multiprobe immunostaining, imaging, and image analysis project investigating the tumor microenvironment from human breast cancer samples. Our hope is that this example may be used to convey to institute administrators the critical importance of the intellectual contributions of the scientific staff in core facilities to research endeavors.


Assuntos
Microscopia , Pesquisadores , Academias e Institutos , Instalações de Saúde , Humanos , Projetos de Pesquisa
7.
Cancers (Basel) ; 13(17)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34503062

RESUMO

There is compelling evidence that the nuclear receptor TRß, a member of the thyroid hormone receptor (TR) family, is a tumor suppressor in thyroid, breast, and other solid tumors. Cell-based and animal studies reveal that the liganded TRß induces apoptosis, reduces an aggressive phenotype, decreases stem cell populations, and slows tumor growth through modulation of a complex interplay of transcriptional networks. TRß-driven tumor suppressive transcriptomic signatures include repression of known drivers of proliferation such as PI3K/Akt pathway, activation of novel signaling such as JAK1/STAT1, and metabolic reprogramming in both thyroid and breast cancers. The presence of TRß is also correlated with a positive prognosis and response to therapeutics in BRCA+ and triple-negative breast cancers, respectively. Ligand activation of TRß enhances sensitivity to chemotherapeutics. TRß co-regulators and bromodomain-containing chromatin remodeling proteins are emergent therapeutic targets. This review considers TRß as a potential biomolecular diagnostic and therapeutic target.

8.
J Endocr Soc ; 5(8): bvab102, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34258492

RESUMO

Thyroid cancer is the most common endocrine malignancy, and the global incidence has increased rapidly over the past few decades. Anaplastic thyroid cancer (ATC) is highly aggressive, dedifferentiated, and patients have a median survival of fewer than 6 months. Oncogenic alterations in ATC include aberrant phosphoinositide 3 kinase (PI3K) signaling through receptor tyrosine kinase (RTK) amplification, loss of phosphoinositide phosphatase expression and function, and protein kinase B (Akt) amplification. Furthermore, the loss of expression of the tumor suppressor thyroid hormone receptor beta (TRß) is strongly associated with ATC. TRß is known to suppress PI3K in follicular thyroid cancer and breast cancer by binding to the PI3K regulatory subunit p85α. However, the role of TRß in suppressing PI3K signaling in ATC is not completely delineated. Here we report that TRß indeed suppresses PI3K signaling in ATC cell lines through unreported genomic mechanisms, including a decrease in RTK expression and an increase in phosphoinositide and Akt phosphatase expression. Furthermore, the reintroduction and activation of TRß in ATC cell lines enables an increase in the efficacy of the competitive PI3K inhibitors LY294002 and buparlisib on cell viability, migration, and suppression of PI3K signaling. These findings not only uncover additional tumor suppressor mechanisms of TRß but shed light on the implication of TRß status and activation on inhibitor efficacy in ATC tumors.

9.
Mol Cancer Res ; 18(10): 1443-1452, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32554601

RESUMO

The thyroid hormone receptor beta (TRß), a key regulator of cellular growth and differentiation, is frequently dysregulated in cancers. Diminished expression of TRß is noted in thyroid, breast, and other solid tumors and is correlated with more aggressive disease. Restoration of TRß levels decreased tumor growth supporting the concept that TRß could function as a tumor suppressor. Yet, the TRß tumor suppression transcriptome is not well delineated and the impact of TRß is unknown in aggressive anaplastic thyroid cancer (ATC). Here, we establish that restoration of TRß expression in the human ATC cell line SW1736 (SW-TRß) reduces the aggressive phenotype, decreases cancer stem cell populations and induces cell death in a T3-dependent manner. Transcriptomic analysis of SW-TRß cells via RNA sequencing revealed distinctive expression patterns induced by ligand-bound TRß and revealed novel molecular signaling pathways. Of note, liganded TRß repressed multiple nodes in the PI3K/AKT pathway, induced expression of thyroid differentiation markers, and promoted proapoptotic pathways. Our results further revealed the JAK1-STAT1 pathway as a novel, T3-mediated, antitumorigenic pathway that can be activated in additional ATC lines. These findings elucidate a TRß-driven tumor suppression transcriptomic signature, highlight unexplored therapeutic options for ATC, and support TRß activation as a promising therapeutic option in cancers. IMPLICATIONS: TRß-T3 induced a less aggressive phenotype and tumor suppression program in anaplastic thyroid cancer cells revealing new potential therapeutic targets.


Assuntos
Carcinoma Anaplásico da Tireoide/genética , Receptores beta dos Hormônios Tireóideos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Genes Supressores de Tumor , Humanos
10.
Horm Cancer ; 11(1): 34-41, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31865591

RESUMO

Metastatic breast cancer is refractory to conventional therapies and is an end-stage disease. RUNX2 is a transcription factor that becomes oncogenic when aberrantly expressed in multiple tumor types, including breast cancer, supporting tumor progression and metastases. Our previous work demonstrated that the thyroid hormone receptor beta (TRß) inhibits RUNX2 expression and tumorigenic characteristics in thyroid cells. As TRß is a tumor suppressor, we investigated the compelling question whether TRß also regulates RUNX2 in breast cancer. The Cancer Genome Atlas indicates that TRß expression is decreased in the most aggressive basal-like subtype of breast cancer. We established that modulated levels of TRß results in corresponding changes in the high levels of RUNX2 expression in metastatic, basal-like breast cells. The MDA-MB-231 triple-negative breast cancer cell line exhibits low expression of TRß and high levels of RUNX2. Increased expression of TRß decreased RUNX2 levels. The thyroid hormone-mediated suppression of RUNX2 is TRß specific as TRα overexpression failed to alter RUNX2 expression. Consistent with these findings, knockdown of TRß in non-tumor MCF10A mammary epithelial-like cells results in an increase in RUNX2 and RUNX2 target genes. Mechanistically, TRß directly interacts with the proximal promoter of RUNX2 through a thyroid hormone response element to reduce promoter activity. The TRß suppression of the oncogene RUNX2 is a signaling pathway shared by thyroid and breast cancers. Our findings provide a novel mechanism for TRß-mediated tumor suppression in breast cancers. This pathway may be common to many solid tumors and impact treatment for metastatic cancers.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Expressão Gênica/genética , Receptores dos Hormônios Tireóideos/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Feminino , Humanos , Neoplasias de Mama Triplo Negativas/patologia
11.
Cancer Epidemiol Biomarkers Prev ; 28(4): 643-649, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30541751

RESUMO

Breast and thyroid cancers are two malignancies with highest incidence in women. These cancers often occur metachronously. Women with thyroid cancer are at increased risk for subsequent breast cancer; women with breast cancer have an increased incidence of later development of thyroid cancer, suggesting a common etiology. This bidirectional relationship is reported worldwide; however, the underlying reasons for this co-occurrence are unknown. In this review, we summarize the current epidemiologic evidence and putative mechanisms of these metachronous or synchronous cancers. Key potential causative factors are chemotherapy and radiotherapy of the primary tumor, genetic variants linking the two diseases, hormonal signaling both from the thyroid gland and from estrogens, and lifestyle and environmental factors. There is a critical need for additional epidemiologic studies focused on gender and regional incidence together with molecular investigations on common tumorigenic pathways in these endocrine cancers. Understanding the putative mechanisms will aid in the diagnosis and clinical management of both diseases.


Assuntos
Neoplasias da Mama/etiologia , Neoplasias da Glândula Tireoide/etiologia , Neoplasias da Mama/epidemiologia , Feminino , Humanos , Programas de Rastreamento , Fatores de Risco , Neoplasias da Glândula Tireoide/epidemiologia
12.
Endocrinology ; 159(6): 2484-2494, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29750276

RESUMO

Thyroid hormone receptor ß (TRß) suppresses tumor growth through regulation of gene expression, yet the associated TRß-mediated changes in chromatin assembly are not known. The chromatin ATPase brahma-related gene 1 (BRG1; SMARCA4), a key component of chromatin-remodeling complexes, is altered in many cancers, but its role in thyroid tumorigenesis and TRß-mediated gene expression is unknown. We previously identified the oncogene runt-related transcription factor 2 (RUNX2) as a repressive target of TRß. Here, we report differential expression of BRG1 in nonmalignant and malignant thyroid cells concordant with TRß. BRG1 and TRß have similar nuclear distribution patterns and significant colocalization. BRG1 interacts with TRß, and together, they are part of the regulatory complex at the RUNX2 promoter. Loss of BRG1 increases RUNX2 levels, whereas reintroduction of TRß and BRG1 synergistically decreases RUNX2 expression. RUNX2 promoter accessibility corresponded to RUNX2 expression levels. Inhibition of BRG1 activity increased accessibility of the RUNX2 promoter and corresponding expression. Our results reveal a mechanism of TRß repression of oncogenic gene expression: TRß recruitment of BRG1 induces chromatin compaction and diminishes RUNX2 expression. Therefore, BRG1-mediated chromatin remodeling may be obligatory for TRß transcriptional repression and tumor suppressor function in thyroid tumorigenesis.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Subunidade alfa 1 de Fator de Ligação ao Core/genética , DNA Helicases/fisiologia , Proteínas Nucleares/fisiologia , Receptores beta dos Hormônios Tireóideos/fisiologia , Fatores de Transcrição/fisiologia , Carcinogênese/genética , Células Cultivadas , Regulação para Baixo/genética , Regulação da Expressão Gênica , Células HEK293 , Humanos , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia
13.
Head Neck ; 39(12): 2459-2469, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29024261

RESUMO

BACKGROUND: The incidence of thyroid cancer is increasing worldwide, and there is an emerging need to develop accurate tools for diagnosis. Fine needle aspiration biopsy has greatly improved evaluation of thyroid nodules, but challenges with indeterminate lesions remain in up to 25% of biopsies. Novel tissue biomarkers may assist in improved nodule characterization. Microcalcifications occurring in thyroid cancers suggest proteins involved in bone formation may play a role in thyroid carcinogenesis. We evaluated the expression of the known osteogenic protein, Enigma, in thyroid cancer as a candidate oncoprotein and role in carcinogenesis based on association with other known oncoproteins such as bone morphogenetic protein-1 (BMP-1). METHODS: The expression of both Enigma and BMP-1 were evaluated by immunohistochemistry (IHC) in an equal number of benign (n = 120) and different histological subtypes of malignant (n = 120) human archival thyroid nodules with and without calcification. The colocalization of Enigma with BMP-1 was evaluated by confocal microscopy using the BZ analyzer. RESULTS: Enigma was strongly expressed in thyroid cancer tissue with a higher immunoreactive score in advanced thyroid cancer compared to less advanced and benign nodules. Enigma was localized either in cytoplasm or nucleus depending on the histological subtypes. Higher expression of Enigma was associated with the tumor size and lymph node involvement. There was clear and strong colocalization signal of Enigma and that of BMP-1. Expression of Enigma occurred without regard to calcification in cancer tissue. CONCLUSION: Enigma may serve as an oncoprotein marker, identifying benign from malignant thyroid tissue on FNA. Enigma may have a role in carcinogenesis of thyroid cancer independent of tissue calcification, possibly in relation to interaction with BMP-1.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteína Morfogenética Óssea 1/genética , Proteínas do Citoesqueleto/genética , Regulação Neoplásica da Expressão Gênica , Proteínas com Domínio LIM/genética , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Adulto , Biópsia por Agulha Fina/métodos , Progressão da Doença , Feminino , Humanos , Imuno-Histoquímica , Masculino , Microscopia Confocal/métodos , Pessoa de Meia-Idade , Proteínas Oncogênicas/genética , Prognóstico , Análise de Sobrevida , Neoplasias da Glândula Tireoide/mortalidade , Neoplasias da Glândula Tireoide/cirurgia , Nódulo da Glândula Tireoide/genética , Nódulo da Glândula Tireoide/mortalidade , Nódulo da Glândula Tireoide/patologia , Nódulo da Glândula Tireoide/cirurgia , Tireoidectomia/métodos , Inclusão do Tecido
14.
Endocrinology ; 157(8): 3278-92, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27253998

RESUMO

Dysregulation of the thyroid hormone receptor (TR)ß is common in human cancers. Restoration of functional TRß delays tumor progression in models of thyroid and breast cancers implicating TRß as a tumor suppressor. Conversely, aberrant expression of the runt-related transcription factor 2 (Runx2) is established in the progression and metastasis of thyroid, breast, and other cancers. Silencing of Runx2 diminishes tumor invasive characteristics. With TRß as a tumor suppressor and Runx2 as a tumor promoter, a compelling question is whether there is a functional relationship between these regulatory factors in thyroid tumorigenesis. Here, we demonstrated that these proteins are reciprocally expressed in normal and malignant thyroid cells; TRß is high in normal cells, and Runx2 is high in malignant cells. T3 induced a time- and concentration-dependent decrease in Runx2 expression. Silencing of TRß by small interfering RNA knockdown resulted in a corresponding increase in Runx2 and Runx2-regulated genes, indicating that TRß levels directly impact Runx2 expression and associated epithelial to mesenchymal transition molecules. TRß specifically bound to 3 putative thyroid hormone-response element motifs within the Runx2-P1 promoter ((-)105/(+)133) as detected by EMSA and chromatin immunoprecipitation. TRß suppressed Runx2 transcriptional activities, thus confirming TRß regulation of Runx2 at functional thyroid hormone-response elements. Significantly, these findings indicate that a ratio of the tumor-suppressor TRß and tumor-promoting Runx2 may reflect tumor aggression and serve as biomarkers in biopsy tissues. The discovery of this TRß-Runx2 signaling supports the emerging role of TRß as a tumor suppressor and reveals a novel pathway for intervention.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core/genética , Receptores beta dos Hormônios Tireóideos/fisiologia , Neoplasias da Glândula Tireoide/genética , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Linhagem Celular Tumoral , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Regiões Promotoras Genéticas/efeitos dos fármacos , Elementos de Resposta , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/metabolismo , Ativação Transcricional/efeitos dos fármacos , Tri-Iodotironina/farmacologia
15.
Thyroid ; 25(7): 812-22, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25936441

RESUMO

BACKGROUND: The increasing incidence of thyroid cancer has resulted in the rate tripling over the past 30 years. Reasons for this increase have not been established. Geostatistics and geographic information system (GIS) tools have emerged as powerful geospatial technologies to identify disease clusters, map patterns and trends, and assess the impact of ecological and socioeconomic factors (SES) on the spatial distribution of diseases. In this study, these tools were used to analyze thyroid cancer incidence in a rural population. METHODS: Thyroid cancer incidence and socio-demographic factors in Vermont (VT), United States, between 1994 and 2007 were analyzed by logistic regression and geospatial and temporal analyses. RESULTS: The thyroid cancer age-adjusted incidence in Vermont (8.0 per 100,000) was comparable to the national level (8.4 per 100,000), as were the ratio of the incidence of females to males (3.1:1) and the mortality rate (0.5 per 100,000). However, the estimated annual percentage change was higher (8.3 VT; 5.7 U.S.). Incidence among females peaked at 30-59 years of age, reflecting a significant rise from 1994 to 2007, while incidence trends for males did not vary significantly by age. For both females and males, the distribution of tumors by size did not vary over time; ≤1.0 cm, 1.1-2.0 cm, and >2.0 cm represented 38%, 22%, and 40%, respectively. In females, papillary thyroid cancer (PTC) accounted for 89% of cases, follicular (FTC) 8%, medullary (MTC) 2%, and anaplastic (ATC) 0.6%, while in males PTC accounted for 77% of cases, FTC 15%, MTC 1%, and ATC 3%. Geospatial analysis revealed locations and spatial patterns that, when combined with multivariate incidence analyses, indicated that factors other than increased surveillance and access to healthcare (physician density or insurance) contributed to the increased thyroid cancer incidence. Nine thyroid cancer incidence hot spots, areas with very high normalized incidence, were identified based on zip code data. Those locations did not correlate with urban areas or healthcare centers. CONCLUSIONS: These data provide evidence of increased thyroid cancer incidence in a rural population likely due to environmental drivers and SES. Geospatial modeling can provide an important framework for evaluation of additional associative risk factors.


Assuntos
Adenocarcinoma Folicular/epidemiologia , Carcinoma Neuroendócrino/epidemiologia , Carcinoma/epidemiologia , População Rural/estatística & dados numéricos , Carcinoma Anaplásico da Tireoide/epidemiologia , Neoplasias da Glândula Tireoide/epidemiologia , Adenocarcinoma Folicular/patologia , Adolescente , Adulto , Distribuição por Idade , Idoso , Carcinoma/patologia , Carcinoma Neuroendócrino/patologia , Carcinoma Papilar , Criança , Feminino , Humanos , Incidência , Modelos Lineares , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Distribuição por Sexo , Análise Espaço-Temporal , Câncer Papilífero da Tireoide , Carcinoma Anaplásico da Tireoide/patologia , Neoplasias da Glândula Tireoide/patologia , Carga Tumoral , Vermont/epidemiologia , Adulto Jovem
16.
Toxicol Sci ; 135(1): 91-102, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23798566

RESUMO

Multiple sclerosis (MS), a demyelinating immune-mediated central nervous system disease characterized by increasing female penetrance, is the leading cause of disability in young adults in the developed world. Epidemiological data strongly implicate an environmental factor, acting at the population level during gestation, in the increasing incidence of female MS observed over the last 50 years, yet the identity of this factor remains unknown. Gestational exposure to bisphenol A (BPA), an endocrine disruptor used in the manufacture of polycarbonate plastics since the 1950s, has been reported to alter a variety of physiological processes in adulthood. BPA has estrogenic activity, and we hypothesized that increased gestational exposure to environmental BPA may therefore contribute to the increasing female MS risk. To test this hypothesis, we utilized two different mouse models of MS, experimental autoimmune encephalomyelitis (EAE) in C57BL/6J mice (chronic progressive) and in SJL/J mice (relapsing-remitting). Dams were exposed to physiologically relevant levels of BPA in drinking water starting 2 weeks prior to mating and continuing until weaning of offspring. EAE was induced in adult offspring. No significant changes in EAE incidence, progression, or severity were observed with BPA exposure, despite changes in cytokine production by autoreactive T cells. However, endocrine disruption was evidenced by changes in testes development, and transcriptomic profiling revealed that BPA exposure altered the expression of several genes important for testes development, including Pdgfa, which was downregulated. Overall, our results do not support gestational BPA exposure as a significant contributor to the increasing female MS risk.


Assuntos
Compostos Benzidrílicos/toxicidade , Encefalomielite Autoimune Experimental/induzido quimicamente , Disruptores Endócrinos/toxicidade , Feto/efeitos dos fármacos , Esclerose Múltipla/induzido quimicamente , Fenóis/toxicidade , Animais , Feminino , Interferon gama/biossíntese , Interleucina-17/biossíntese , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA